Ábaco Oriental/Métodos Tradicionales/Uso de la 5ª Cuenta Inferior

De Wikilibros, la colección de libros de texto de contenido libre.

Introducción[editar]

Ábacos con cinco cuentas inferiores, Museo Ridai de Ciencia Moderna, Tokio (Japón)
El ábaco oriental como heredero de las varillas de cálculo

Es un misterio por qué los ábacos tradicionales chinos y japoneses tenían cinco cuentas en su parte inferior, ya que solo se requieren cuatro desde el punto de vista de la representación de números decimales. Como ningún documento antiguo existente parece explicarlo, este misterio probablemente dure para siempre y tendremos que conformarnos con nuestras propias conjeturas para tratar de comprender su origen. En esta línea, podríamos pensar que, cuando aparecieron por primera vez, los ábacos de cuentas fijas fueron concebidos a imagen y semejanza de las varillas de cálculo, de las que heredaron todos los algoritmos. Con las varillas de cálculo, el uso de cinco barras para representar el número cinco era obligatorio para evitar la ambigüedad entre uno y cinco, al menos inicialmente, cuando no se usaba una representación del cero ni un tablero cuadriculado al estilo japonés. Equipar el ábaco con cinco cuentas inferiores permite una manipulación paralela o similar de cuentas y varillas, aportando algún tipo de compatibilidad de "hardware" y "software" a los ábacos de cuentas fijas; de hecho, los primeros libros chinos sobre el ábaco también se ocupaban de las varillas de cálculo, por lo que ambos instrumentos eran aprendidos al mismo tiempo. También podríamos invocar un cierto deseo de compatibilidad entre el ábaco y el sistema de notación derivado de las varillas de cálculo que, de una forma u otra, ha estado en uso hasta los tiempos modernos. Si fuéramos a anotar nuestros resultados usando tal notación, estaríamos interesados en cambiar los cincos de nuestro ábaco para que estén representados por las cinco cuentas inferiores con el fin de evitar errores de transcripción catastróficos.

Las varillas de cálculo, el ábaco más versátil y poderoso de la historia, tenía un defecto: es extremadamente lento de manipular. Como se ha explicado en la sección anterior de este libro, no es una sorpresa que los antiguos matemáticos chinos inventaran la tabla de multiplicar para acelerar la multiplicación y que también descubrieran el uso de dicha tabla de multiplicar para acelerar la división. No ha de ser, por tanto, una sorpresa que también descubrieran que las operaciones de suma y resta se podían simplificar un poco al usar la quinta cuenta inferior del ábaco. Realmente tenían que ser muy sensibles a la lentitud.

A continuación, se presenta un pequeño conjunto de reglas para el uso de la quinta cuenta junto con su razón de ser y alcance de uso. Estas reglas no se establecen explícitamente en ninguna de las obras clásicas, pero se pueden inferir de las demostraciones de suma y resta presentes en ellas[1], especialmente en el: Métodos computacionales con las cuentas en una bandeja (Pánzhū Suànfǎ 盤珠算法) de Xú Xīnlǔ 徐心魯 (1573)[2], por cierto, el libro más antiguo que se conoce enteramente dedicado al ábaco.

Algunos términos y notación[editar]

Notación relacionada con el uso de la quinta cuenta inferior

En lo que sigue usaremos los siguiente conceptos y forma de notación en referencia al uso (o no) de la quinta cuenta inferior (véase la figura acompañante a la derecha).

  • F: para denotar un cinco inferior (cinco cuentas inferiores activadas) en lugar de:
  • 5: cinco superiores (una cuenta superior activada).
  • T: diez en una varilla (una cuenta superior y cinco cuentas inferiores activadas). En el ábaco de tipo 5 + 2, también es un diez inferior en lugar de t un diez superior (dos cuentas superiores activadas).
  • Q: quince inferior en una varilla (dos cuentas superiores y cinco cuentas inferiores activadas) en lugar de q quince superior (cuenta superior suspendida en el 5+2, tres cuentas superiores activadas en el 5+3).
  • acarreo: esto representa el número 1 cuando se debe agregar a una columna como un acarreo desde la derecha (adición).

Reglas para la adición[editar]

  • a1: No utilice nunca la quinta cuenta, excepto en los dos casos siguientes:
    • a2: 4 + acarreo = F
    • a3: 9 + acarreo = T

Es decir, al sumar 1 a una varilla se actúa como de costumbre, por ejemplo:

A A
 A + 1 =  
4 5


y

A B A B
 B + 1 =  
0 9 1 0

pero al sumar 1 como resultado de un acarreo o llevada, se usa la quinta cuenta inferior en la forma:

A B A B
 B + 5 = 
4 6 F 1

y

A B A B
 B + 5 = 
9 6 T 1

Puede ver las reglas de adición anteriores mencionadas de una manera ligeramente diferente por Chen[3].

La lógica de estas reglas[editar]

El objetivo de la regla a1 es simplemente procurar dejar siempre una cuenta inferior sin usar a nuestra disposición para el caso de que la columna actual tenga que recibir posteriormente un acarreo desde la derecha, mientras que las reglas a2 y a3 dictan el uso de la quinta cuenta ante tal situación. Entonces, podemos esperar obtener:

  • una reducción del número de movimientos de dedos porque evitamos tratar con las cuentas superiores e inferiores a la vez
  • evitar algunos saltos de varillas y reducir el intervalo de desplazamiento izquierda-derecha de la mano
  • cortar cualquier "acarreo múltiple" hacia la izquierda (piense en 99999 + 1 = 999T0 en lugar de 99999 + 1 = 100000)

La ventaja[editar]

Las ventajas anteriores se obtienen automáticamente mediante el uso de las reglas a2 y a3, pero la regla a1 es de naturaleza diferente. La regla a1 es una previsión para el futuro, simplificará las cosas si un acarreo futuro realmente cae en la columna actual (lo que ocurre aproximadamente el 50% de las veces en promedio), pero no simplificará nada en caso contrario. La regla a1 es una especie de apuesta (las reglas para la resta a continuación también son de la misma naturaleza).

El ámbito de uso[editar]

Las reglas a1, a2 y a3 son para columnas que pueden recibir un acarreo, lo que excluye la última columna a la derecha en la operación normal (es decir, operando de izquierda a derecha).

En la operación inversa (operando de derecha a izquierda), ninguna columna recibirá posteriormente un acarreo desde la derecha, por lo que la regla a1 no es aplicable, pero las reglas a2 y a3 siempre deberán usarse. (Esto se menciona porque una técnica antigua, ahora caída en el olvido, utilizaba la operación hacia la izquierda en alternancia con la operación normal en sumas y restas de varios números para evitar largos desplazamientos de la mano. No es de utilidad general, pero sí un ejercicio extremadamente interesante y recomendable para un usuario avanzado para mejorar su "comprensión de las cuentas").

Excepcionalmente, si sabe que alguna columna nunca recibirá un acarreo, también podemos olvidarlos de la regla a1. (Esto puede parece un comentario extraño aquí, pero debemos hacerlo para lo que seguirá).

Reglas para la sustracción[editar]

  • s1 Utilice siempre cinco inferiores (F) en lugar de cinco superiores (5). Por ejemplo: 7-2 = F
A A A
 A - 2 =    no 
7 F 5
  • s2 Nunca deje una varilla despejada (0) si puede tomar prestado de la varilla inmediatamente a la izquierda (¡pero no de una más lejana!), deje T en su lugar, es decir, por ejemplo: 27-7 = 1T
A B A B
 B - 7 =  
2 7 1 T
en lugar de 27-7 = 20.
A B A B
 B - 7 =  
2 7 2 0
Observación
Estas dos reglas no se aplican a las varillas de las que está tomando prestado; es decir, 112-7 = 10F
A B C A B C A B C
 ABC - 7 =    no 
1 1 2 1 0 F 0 T F
y 62-7 = 5F (no FF).
A B A B A B
 AB - 7 =   no 
6 2 5 F F F

La lógica de estas reglas[editar]

Ambas reglas tienden a dejar cuentas inferiores activadas a nuestra disposición para el caso en que necesitemos tomar prestado de ellas en el futuro (es como tener dinero suelto en el bolsillo por si acaso), ahorrándonos algunos movimientos y/o desplazamientos de la mano más anchos o más complejos, como tomar prestado de columnas no adyacentes o saltar varillas.

La ventaja[editar]

No se obtiene automáticamente, sólo cuando necesitamos tomar prestado de la varilla actual. En esto es similar a la regla de adición a1.

El ámbito de uso[editar]

Una vez más, la columna de la derecha está fuera del alcance de estas reglas, ya que nunca tomaremos prestado de ella.

Además, en la operación hacia la izquierda o inversa, nunca tomaremos prestado de la columna actual, por lo que estas reglas no se aplican (lo que puede verse como una razón adicional para preferir la operación hacia la derecha en el uso normal).

Ejemplo de uso de las reglas[editar]

Diagramas del Panzhu Suanfa de Xu Xinlu (1573) para el ejercicio 123456879 (adición)
Diagramas del Panzhu Suanfa de Xu Xinlu (1573) para el ejercicio 123456879 (sustracción)

Era común en los libros antiguos sobre el ábaco demostrar la suma y la resta mediante el conocido ejercicio que consiste en sumar el número 123456789 nueve veces a un ábaco puesto a cero hasta llegar al número 1111111101, y luego borrarlo nuevamente restando el mismo número nueve veces. Este ejercicio parece tener el nombre chino: "Jiǔ pán qīng" 九 盤 清, que significa algo así como "limpiar las nueve bandejas".

Precisamente, las reglas de uso de la quinta cuenta inferior ofrecidas aquí se han inferido de la demostración de suma y resta que aparece en el Panzhu Suanfa[2] de Xu Xinlu, por lo que nada mejor que emplear este ejercicio como prueba de dichas reglas. En particular, las reglas permiten reconstruir la serie de resultados intermedios que aparecen en el mencionado libro[4] tras cada adición o sustracción del número 12345689. Para la suma:

      000000000, 123456789, 246913F78, 36T36T367, 4938271F6,
      617283945, 74073T734, 864197F23, 9876F4312,    ...    


en este punto, agregar 123456789 una vez más da como resultado 1111111101, pero este número aparece en el Panzhu Suanfa como:

      TTTTTTTT1

es decir, el ábaco presenta este aspecto:

T T T T T T T T 1

que no se puede obtener mediante el uso de las reglas anteriores únicamente. Una situación similar ocurre al repetir este ejercicio pero comenzando con 999999999 en lugar de un ábaco despejado (ver Tabla 2), llegando a 1TTTTTTTT0. Es por esto por lo que incluimos el último comentario sobre el alcance de las reglas de adición anteriores. Puede ser que, por inspección o intuición, nos demos cuenta de que usar la quinta cuenta aquí no genera ningún acarreo, por lo que podemos prescindir de la regla a1 y proceder a este resultado, ...un tanto teatral por lo demás.

A partir de aquí, por sustracción deberíamos obtener:

      TTTTTTTT1, 9876F4312, 864197523, 740740734, 61728394F,
      493827156, 36T370367, 246913578, 123456789, 000000000

Como se puede ver, pocas F y T aparecen en los resultados intermedios de esta parte del ejercicio, pero algunas más aparecen durante el cálculo (Tabla 1), siendo inmediatamente convertidas a 4 y 9 al tomar prestado, que es el propósito para el cual fueron introducidas. Las F y T que quedan en los resultados intermedios son sólo las no utilizadas.

Veamos a continuación el detalle del ejercicio. El lector debería estudiarlo detenidamente.

Suma[editar]

Panzhu Suanfa: Suma (ejercicio 123456789).
ABCDEFGHI       ABCDEFGHI       ABCDEFGHI       ABCDEFGHI       ABCDEFGHI  
---------       ---------       ---------       ---------       ---------  
000000000       123456789       246913F78       36T36T367       4938271F6  
100000000  A+1  223456789  A+1  346913F78  A+1  46T36T367  A+1  5938271F6  A+1
120000000  B+2  243456789  B+2  366913F78  B+2  48T36T367  B+2  6138271F6  B+2
123000000  C+3  246456789  C+3  369913F78  C+3  49336T367  C+3  6168271F6  C+3
123400000  D+4  246856789  D+4  36T313F78  D+4  49376T367  D+4  6172271F6  D+4
123450000  E+5  246906789  E+5  36T363F78  E+5  49381T367  E+5  6172771F6  E+5
123456000  F+6  246912789  F+6  36T369F78  F+6  493826367  F+6  6172831F6  F+6
123456700  G+7  246913489  G+7  36T36T278  G+7  493827067  G+7  6172838F6  G+7
123456780  H+8  246913F69  H+8  36T36T358  H+8  493827147  H+8  617283936  H+8
123456789  I+9  246913F78  I+9  36T36T367  I+9  4938271F6  I+9  617283945  I+9
                  
ABCDEFGHI       ABCDEFGHI       ABCDEFGHI       ABCDEFGHI      
---------       ---------       ---------       ---------      
617283945       74073T734       864197F23       9876F4312      
717283945  A+1  84073T734  A+1  964197F23  A+1  T876F4312  A+1    
737283945  B+2  86073T734  B+2  984197F23  B+2  TT76F4312  B+2    
740283945  C+3  86373T734  C+3  987197F23  C+3  TTT6F4312  C+3    
740683945  D+4  86413T734  D+4  987597F23  D+4  TTTTF4312  D+4    
740733945  E+5  86418T734  E+5  987647F23  E+5  TTTTT4312  E+5    
740739945  F+6  864196734  F+6  9876F3F23  F+6  TTTTTT312  F+6    
74073T645  G+7  864197434  G+7  9876F4223  G+7  TTTTTTT12  G+7    
74073T725  H+8  864197F14  H+8  9876F4303  H+8  TTTTTTT92  H+8    
74073T734  I+9  864197F23  I+9  9876F4312  I+9  TTTTTTTT1  I+9   

Resta[editar]

Panzhu Suanfa: Resta (ejercicio 123456789).
ABCDEFGHI       ABCDEFGHI       ABCDEFGHI       ABCDEFGHI       ABCDEFGHI  
---------       ---------       ---------       ---------       ---------  
TTTTTTTT1       9876F4312       864197523       740740734       61728394F  
9TTTTTTT1  A-1  8876F4312  A-1  764197523  A-1  640740734  A-1  F1728394F  A-1
98TTTTTT1  B-2  8676F4312  B-2  744197523  B-2  620740734  B-2  49728394F  B-2
987TTTTT1  C-3  8646F4312  C-3  741197523  C-3  617740734  C-3  49428394F  C-3
9876TTTT1  D-4  8642F4312  D-4  740797523  D-4  617340734  D-4  49388394F  D-4
9876FTTT1  E-5  8641T4312  E-5  740747523  E-5  617290734  E-5  49383394F  E-5
9876F4TT1  F-6  864198312  F-6  740741523  F-6  617284734  F-6  49382794F  F-6
9876F43T1  G-7  864197612  G-7  740740823  G-7  617283T34  G-7  49382724F  G-7
9876F4321  H-8  864197532  H-8  740740743  H-8  6172839F4  H-8  49382716F  H-8
9876F4312  I-9  864197523  I-9  740740734  I-9  61728394F  I-9  493827156  I-9
                  
ABCDEFGHI       ABCDEFGHI       ABCDEFGHI       ABCDEFGHI      
---------       ---------       ---------       ---------      
493827156       36T370367       246913578       123456789      
393827156  A-1  26T370367  A-1  146913578  A-1  023456789  A-1    
373827156  B-2  24T370367  B-2  126913578  B-2  003456789  B-2    
36T827156  C-3  247370367  C-3  123913578  C-3  000456789  C-3    
36T427156  D-4  246970367  D-4  123F13578  D-4  000056789  D-4    
36T377156  E-5  246920367  E-5  123463578  E-5  000006789  E-5    
36T371156  F-6  246914367  F-6  123457578  F-6  000000789  F-6    
36T370456  G-7  246913667  G-7  123456878  G-7  000000089  G-7    
36T370376  H-8  246913587  H-8  123456798  H-8  000000009  H-8    
36T370367  I-9  246913578  I-9  123456789  I-9  000000000  I-9    

Extensión del ejemplo[editar]

Una vez que comprenda y domine el presente ejercicio, puede extenderlo para ampliar su práctica de uso de la quinta cuenta sin mas que repetirlo sobre un fondo 111111111, 222222222,..., 999999999 en lugar de 000000000. Se ofrecen a continuación los resultados parciales.

    0          1           2           3           4
000000000  0111111111  0222222222  0333333333  0444444444
123456789  02345678T0  0345678T11  045678T122  05678T1233
246913F78  0357T24689  046913F7T0  057T246911  0691357T22
36T36T367  0481481478  0592592F89  06T36T36T0  0814814811
4938271F6  0604938267  0715T49378  082715T489  09392715T0
617283945  0728394TF6  08394T6167  09F0617278  1061738389
74073T734  08F18F1845  09629629F6  1074073T67  118F18F178
864197F23  097F308634  1086419745  1197F2T8F6  1308641967
9876F4312  109876F423  1209876F34  1320987645  14320987F6
TTTTTTTT1  1222222212  1333333323  1444444434  1555FFFF45
9876F4312  1098765423  1209876534  132098764F  1432098756
864197523  097F308634  108641974F  1197F30856  1308641967
740740734  08F18F184F  0962962956  0T74074067  118F18F178
61728394F  072839F056  0839F06167  09F0617278  0T61728389
493827156  05T4938267  0716049378  0827160489  093827159T
36T370367  0481481478  0592592589  06T370369T  0814814811
246913578  0357T24689  046913579T  0F7T246911  0691358022
123456789  023456789T  0345678T11  04F678T122  0F678T1233
000000000  0111111111  0222222222  0333333333  0444444444
        
    5          6           7           8           9
0555555555  0666666666  0777777777  0888888888  0999999999
0678T12344  078T1234F5  08T1234F66  0T1234F677  11234F6788
07T2469133  091357T244  0T246913F5  11357T2466  1246913F77
0925925922  1036T36T33  1148148144  12592592F5  136T36T366
1049382711  115T493822  12715T4933  1382715T44  14938271F5
11728394T0  128394T611  1394T61722  1F06172833  1617283944
1296296289  14073T73T0  1F18F18F11  1629629622  174073T733
14197F2T78  1530864189  164197F2T0  17F3086411  1864197F22
1543209867  1654320978  176F431T89  1876F431T0  19876F4311
16666666F6  1777777767  1888888878  1999999989  1TTTTTTTT0
1F43209867  16F4320978  176F432089  1876F4319T  19876F4311
14197F3078  1F30864189  164197529T  17F3086411  1864197522
1296296289  140740739T  1F18F18F11  1629629622  1740740733
117283949T  12839F0611  139F061722  14T6172833  1617283944
0T49382711  115T493822  1271604933  1382716044  149382715F
0925925922  0T36T37033  1148148144  125925925F  136T370366
07T2469133  0913580244  0T2469135F  11357T2466  1246913577
0678T12344  078T12345F  08T1234566  0T12345677  1123456788
0FFF55555F  0666666666  0777777777  0888888888  0999999999

Reglas adicionales[editar]

Por supuesto, las reglas para la suma también se pueden usar directamente en la multiplicación y las reglas para la resta en la división, raíces, etc. Ya lo sabe, todo lo que se puede hacer en el ábaco consiste en una sucesión de sumas y restas.

Adicionalmente, aunque la división tradicional se estudiará en capítulos posteriores, podemos dejar indicada aquí una regla adicional que le es específica y a la que podrá referirse tras estudiar la tabla de división; con ábacos 5+2 o 5+3:

  • k1: Utilice siempre cinco, diez y quince inferiores (F, T, Q) cuando sume al resto durante la aplicación de las reglas de división.

Esto es así porque, aunque estemos sumando a una varilla, lo siguiente que haremos será empezar a restar de la misma (si el divisor tiene más de un dígito). Es una especie de extensión de la primera regla para la resta (s1). Por ejemplo, iniciando la división87÷98:

87÷98
Ábaco Comentario
ABCDEFG
87   98 Dividendo: AB, divisor: FG
8Q   98 A: Regla 8/9>8+8
-64
886  98 etc.

Justo después de la aplicación de la regla de división 8/9>8+8 deberíamos tener:

Regla: 8/9>8+8
A B C D E F G
8 Q 0 0 0 9 8

Por cierto, a veces puede encontrar algo contradictorio el uso de la segunda regla para la resta (s2) en la división tradicional. Por ejemplo, 1167/32 = 36.46875


1167/32 = 36.46875
Ábaco Comentario
ABCDEFG
32 1167 regla 1/3>3+1
32 3267 -3*2=-6 in F, use la regla s2
    -6
32 31T7

Ahora bien, ¿qué regla de división debería usarse aquí? 1/3>3+1 o 2/3>6+2? De hecho, podemos usar cualquiera de ellas y revisarlas según sea necesario, pero es más rápido darse cuenta de que el resto es en realidad 3207, de modo que la segunda regla de división es la adecuada, así que simplemente cambie las columnas EF a 62 y continue...

Ábaco Comentario
ABCDEFG
32 3627
...


Finalmente, si está utilizando el método de multiplicación tradicional o similar en un 5+2, puede encontrarse con un desbordamiento en algunas columnas, por lo que la regla adicional:

  • m1 [14] + acarreo = Q

debe tambien considerarse.

Acerca de la ventaja[editar]

Está claro que el uso de la quinta cuenta puede reducir el número de movimientos de cuentas o de los dedos requeridos en algunos cálculos (piense en 99999 + 1 = 999T0 frente a 99999 + 1 = 100000). Una estimación basada en el ejercicio 123456789 y algunos de sus derivados conduce a una reducción del 10% en promedio (contando los movimientos simultáneos de las cuentas superior e inferior por separado). Esta es una reducción modesta, pero la ventaja de la quinta cuenta va más allá de simplemente reducir el número de movimientos de los dedos, ya que también reduce el número y/o la extensión de otros gestos de la mano requeridos en los cálculos (desplazamientos, cambios de dirección, saltos de varillas, ...). Como ya se ha indicado en otra parte, cada gesto:

  • como proceso físico, tarda un tiempo en completarse,
  • como lo controla nuestro cerebro, requiere nuestra atención, consumiendo energía (mental o bioquímica),
  • como lo hacemos seres humanos (no máquinas), tiene la posibilidad de hacerse de manera incorrecta, introduciendo errores.

Bajo esta óptica, podemos esperar entonces que el uso de la quinta cuenta resulte en un cálculo algo más rápido, más relajado y fiable al reducir el número total de gestos requeridos. No es fácil medir esta triple ventaja utilizando un solo parámetro.

Saltar columnas parece haber sido visto tradicionalmente como algo que debe evitarse como una posible fuente de errores[1][3]. Sin este concepto, la regla de resta (s2) no se puede entender ya que no siempre conduce a una reducción en el número de movimientos de los dedos, pero siempre reduce el rango de movimiento de la mano y la necesidad de saltar barras.

En cualquier caso, la ventaja de usar la quinta cuenta, aunque no despreciable, es solo modesta, y cada uno debe decidir si vale la pena usarla o no. Después de acostumbrarse y dominar el uso de la quinta cuenta, no hay mejor prueba de su eficiencia que usar nuevamente un ábaco moderno 4+1, y ser sensible al trabajo adicional requerido para completar las mismas tareas con él.

Referencias[editar]

  1. 1,0 1,1 Chen Yifu (2013) (en Francés). L’étude des Différents Modes de Déplacement des Boules du Boulier et de l’Invention de la Méthode de Multiplication Kongpan Qianchengfa et son Lien avec le Calcul Mental. Université Paris-Diderot (Paris 7). http://www.theses.fr/2013PA070061. 
  2. 2,0 2,1 Xú Xīnlǔ (徐心魯) (1993) [1573] (en Chino). Pánzhū Suànfǎ (盤珠算法). Zhōngguó kēxué jìshù diǎnjí tōng huì (中國科學技術典籍通彙). 
  3. 3,0 3,1 Chen Yifu (2018). «The Education of Abacus Addition in China and Japan Prior to the Early 20th Century». En Volkov, Alexei; Freiman, Viktor. Computations and Computing Devices in Mathematics Education Before the Advent of Electronic Calculators. Springer Publishing. ISBN 978-3-319-73396-8. https://link.springer.com/book/10.1007%2F978-3-319-73396-8. 
  4. Suzuki, Hisao (鈴木 久男) (1982). «Chuugoku ni okeru shuzan kagen-hou 中国における珠算加減法» (en Japonés). Kokushikan University School of Political Science and Economics 57 (3). ISSN 0586-9749. http://id.nii.ac.jp/1410/00008407/. 

Otras lecturas[editar]

Recursos externos[editar]

Puede practicar online el uso de la quinta cuenta con Soroban Trainer (ver capítulo: Introducción) usando este fichero 123456789-5bead.sbk que tendrá que descargar a su ordenador y después subirlo a Soroban Trainer (Es un archivo de texto que puede inspeccionar con cualquier editor de texto y que puede descargar de forma segura a su computadora.).