Ábaco Oriental/Métodos Tradicionales/Guía a la División Tradicional

De Wikilibros, la colección de libros de texto de contenido libre.

Introducción[editar]

El método de división tradicional (TD), kijohou , guī chúfǎ (帰除法), es uno de los dos métodos principales de división utilizados con el ábaco. Este método utiliza tanto la tabla de multiplicar como una tabla de división específica y ha sido el método estándar estudiado con el ábaco durante al menos 4 siglos, perdiendo popularidad en la década de 1930 por las razones que ya han sido comentadas. Como algoritmo de división dígito a dígito lo hemos presentado en el capítulo anterior comparándolo al método de división moderno; haciendo hincapié en su especial característica: no requiere pensar en qué dígito provisional probar, sino sólo seguir las reglas. En el presente capítulo veremos cómo llevarlo efectivamente a la práctica con el ábaco.

La tabla de división[editar]

En el capítulo anterior se ha introducido la siguiente tabla de división o tabla de dividir (八算, Hassan en japonés, Bāsuàn en chino):

Tabla de División
1/9>1+1 2/9>2+2 3/9>3+3 4/9>4+4 5/9>5+5 6/9>6+6 7/9>7+7 8/9>8+8 9/9>9+9
1/8>1+2 2/8>2+4 3/8>3+6 4/8>5+0 5/8>6+2 6/8>7+4 7/8>8+6 8/8>9+8
1/7>1+3 2/7>2+6 3/7>4+2 4/7>5+5 5/7>7+1 6/7>8+4 7/7>9+7
1/6>1+4 2/6>3+2 3/6>5+0 4/6>6+4 5/6>8+2 6/6>9+6
1/5>2+0 2/5>4+0 3/5>6+0 4/5>8+0 5/5>9+5
1/4>2+2 2/4>5+0 3/4>7+2 4/4>9+4
1/3>3+1 2/3>6+2 3/3>9+3
1/2>5+0 2/2>9+2
1/1>9+1

donde cada celda es el resultado de la división euclídea:

(: cociente, : resto, dígitos de 1 a 9) expresado en la forma por razones que veremos a continuación. Esto significa que se cumple lo siguiente:

Aunque ya hemos señalado al final del capítulo anterior que las reglas diagonales (en gris) son especiales; son un tanto excepcionales en el sentido de que que el resto de la división euclídea siempre es menor que el divisor, lo cual no es el caso aquí, por lo que estas reglas no son el resultado de una división euclídea en sentido estricto aunque satisfagan la ecuación anterior. En breve podremos explicar su especial naturaleza.

La tabla tiene tres zonas que corresponden a lo siguiente: Si el divisor tiene cifras y lo comparamos con los primeros dígitos del dividendo contados desde la izquierda (añadiendo ceros finales si fuera necesario), pueden ocurrir tres casos:

  1. que el dividendo sea mayor o igual que el divisor (ej. )
  2. que el dividendo sea menor que el divisor y el primer dígito del divisor sea igual al primer dígito del dividendo (por ejemplo, )
  3. que el dividendo sea menor que el divisor y el primer dígito del divisor sea mayor que el primer dígito del dividendo (por ejemplo, )

Las tres zonas de la tabla se corresponden con estos tres casos:

  • Las celdas en blanco bajo la diagonal de la tabla de división corresponden al caso 1. Podrían rellenarse al estilo de las tablas que se pueden ver en otros lugares[1], pero las dejamos vacías aquí por simplicidad. Si durante la división caemos en esta zona, procederemos, al menos por ahora, simplemente revisando al alza el dígito anterior del cociente tal y como veremos en los ejemplos que seguirán.
  • Los elementos diagonales (en gris) corresponden al caso 2, lo cual sólo puede ocurrir si el divisor tiene al menos dos dígitos.
  • Finalmente, los demás elementos no diagonales corresponden al caso 3, que puede considerarse el más importante de estudiar.

Ahora sí, ya podemos explicar lo que las reglas diagonales tienen de especial. Si pensamos en el ejemplo dado arriba: , si tratamos de aplicar la filosofía de la división tradicional, tal y como se introdujo en el capítulo anterior, deberíamos simplificar el problema a , lo que nos conduce a un cociente de 10 y un resto nulo; pero dicho cociente de 10 es excesivo de entrada ya que y no podríamos restarlo del dividendo. Estamos forzados, por tanto, a revisar a la baja el divisor y considerar 9, en lugar de 10, como cociente provisional y aceptar 6 como resto de la división . Podemos entender por tanto las reglas diagonales como el resultado de una división euclídea, en sentido estricto, inmediatamente seguida de una revisión a la baja.

No hay duda de que memorizar la tabla de división requiere una inversión de tiempo y esfuerzo. Por ello, al lector le interesaría probar el método para saber si le interesa o no antes de realizar dicha inversión. Afortunadamente, las reglas de división por nueve, cinco y dos tienen una estructura muy simple que permiten memorizarlas casi instantáneamente (ver más abajo); también los elementos diagonales para divisores de varios dígitos se pueden retener inmediatamente. Esto significa que podemos aprender esta técnica tradicional sin mucho esfuerzo utilizando divisores que comienzan con 9, 5 o 2 y así poder decidir si vale la pena dedicar tiempo a aprender toda la tabla o no. En lo que sigue usaremos ejemplos basados en tales divisores.

Reglas fáciles de memorizar
Diagonal División por 9 División por 5 División por 2
1/1>9+1 1/9>1+1 1/5>2+0 1/2>5+0
2/2>9+2 2/9>2+2 2/5>4+0
3/3>9+3 3/9>3+3 3/5>6+0
4/4>9+4 4/9>4+4 4/5>8+0
5/5>9+5 5/9>5+5
6/6>9+6 6/9>6+6
7/7>9+7 7/9>7+7
8/8>9+8 8/9>8+8
9/9>9+9

¿Por qué las reglas de división incluyen restos?[editar]

Supongamos que vamos a dividir 35 entre 9, la regla 3/9>3+3 nos dice que debemos usar 3 como cociente intermedio y el siguiente paso será restar el producto 3✕9 = 27 de 35, dejando un resto de 8. Si también memorizamos los restos, podemos ahorrarnos este paso de multiplicación de la siguiente manera: quitamos, limpiamos o borramos el primer dígito del dividendo, en este caso 3, luego sumamos el resto (3) a la siguiente cifra (5) del dividendo. De esta forma obtenemos el mismo resultado pero sin utilizar la tabla de multiplicar. Con divisores de un dígito nunca tendremos que recurrir a la tabla de multiplicar, y en el caso de divisores con varias cifras, procediendo de la misma forma, nos ahorraremos una de las multiplicaciones necesarias. Lo veremos en el ábaco a continuación, pero primero necesitamos añadir algo sobre cómo vamos a organizar la división en el ábaco.

Disposición moderna de la división (MDA)[editar]

Se supone que el lector ya ha estudiado el método moderno del ábaco y la división moderna tal como se ha explicado en la sección precedente de este libro y que se corresponde con el método divulgado en lengua inglesa por Takashi Kojima.[2]. En particular, ya conoce cómo organizar la división sobre un ábaco 4+1, por lo que en los ejemplos siguientes ilustraremos la división tradicional usando la misma disposición con la que ya está familiarizado para que pueda seguirla más fácilmente y usar su ábaco de tipo 4+1 habitual si lo desea. Llamaremos a esta organización Disposición moderna de la división (o MDA, por sus siglas en inglés), pero esta disposición no es la forma en que la división se organizaba tradicionalmente en el ábaco. Más adelante, presentaremos la Disposición tradicional de la división (TDA) que, como veremos, tiene algunas ventajas y algunos inconvenientes, incluyendo la necesidad (o al menos la conveniencia) de utilizar un ábaco especializado con cuentas superiores adicionales.

Mientras use MDA puede usar las mismas reglas que ya conoce sobre la posición de la varilla unitaria si las necesita.

Veamos ahora el caso de la división 35÷9 del párrafo anterior, primero sin usar los restos (de la regla):

35÷9 sin usar los restos (de la regla)
Ábaco Comentario
ABCDEFGH
9     35 Divisor en A, dividendo en GH, regla: 3/9>3+3
    +3 cociente provisional 3 en E
9    335
     -27 restar 3✕9=27 de GH
9    3 8 nuevo resto/dividendo en H
  ... ...


Y ahora usando los restos:

35÷9 usando los restos (de la regla)
Ábaco Comentario
ABCDEFGH
9     35 Divisor en A, dividendo en GH, regla: 3/9>3+3
    +3 cociente provisional 3 en E
9    335
     -3 borrar primer dígito del dividendo en G
9    3 5
9     +3 sumar el resto 3 de la regla a H
9    3 8 nuevo resto/dividendo en H
  ... ...
es decir
Cuando se usa MDA, la regla a/b>q+r se debe leer: "introducir q como dígito provisional del cociente a la izquierda de a, borrar a y sumar r a la cifra de la derecha”

Divisores de un dígito[editar]

El número 123456789 se ha utilizado tradicionalmente para demostrar el uso de las tablas de multiplicar y dividir en libros antiguos chinos[3] y japoneses[4][5]. Aquí lo usaremos con los "divisores fáciles" 9, 5 y 2.

Ejemplo: 123456789÷9=13717421[editar]

123456789÷9=13717421
Ábaco Comentario
 ABCDEFGHIJ (divisor no indicado)
  123456789 Regla 1/9>1+1
+1 cociente provisional 1 en A
 -1 borrar B
  +1 añadir resto 1 al dígito adyacente
 1 33456789 Regla 3/9>3+3
 13 6456789 Regla 6/9>6+6
 1361056789
  +1-9 revisión al alza
 137 156789 Regla 1/9>1+1
 1371 66789 Regla 6/9>6+6
 1371612789
    +1-9 revisión al alza
 13717 3789 Regla 3/9>3+3
 1371731089
    +1-9 revisión al alza
 137174 189 Regla 1/9>1+1
 1371741 99
      +1-9 revisión al alza
 1371742  9
       +1-9 revisión al alza
 13717421 ¡Hecho!

Ejemplo: 123456789÷5=24691357.8[editar]

123456789÷5=24691357.8
Ábaco Comentario
 ABCDEFGHIJ (divisor no indicado)
  123456789 Regla 1/5>2+0
 2 23456789 Regla 2/5>4+0
 24 3456789 Regla 3/5>6+0
 246 456789 Regla 4/5>8+0
 2468 56789
   +1-5 revisión al alza
 2469  6789
    +1-5 revisión al alza
 24691 1789 Regla 1/5>2+0
 246912 789
     +1-5 revisión al alza
 246913 289 Regla 2/5>4+0
 2469134 89
      +1-5 revisión al alza
 2469135 39 Regla 3/5>6+0
 24691356 9
       +1-5 revisión al alza
 24691357 4 Regla 3/5>6+0
 246913578 ¡Hecho!

Ejemplo: 123456789÷2=61728394.5[editar]

123456789÷2=61728394.5
Ábaco Comentario
 ABCDEFGHIJ (divisor no indicado)
  123456789 Regla 1/2>5+0
 5 23456789
+1-2 revisión al alza
 6  3456789
 +1-2 revisión al alza
 61 1456789 Regla 1/2>5+0
 615 456789
  +2-4 revisión al alza dos veces
 617  56789
   +2-4 revisión al alza dos veces
 6172 16789 Regla 1/2>5+0
 61725 6789
    +3-6 revisión al alza tres veces
 61728  789
     +3-6 revisión al alza tres veces
 617283 189 Regla 1/2>5+0
 6172835 89
      +4-8 revisión al alza cuatro veces
 6172839  9
       +4-8 revisión al alza cuatro veces
 61728394 1 Regla 1/2>5+0
 617283945 ¡Hecho!

Divisores de varios dígitos[editar]

Considere, por ejemplo, , en este caso es conveniente pensar en el divisor como compuesto por un divisor propiamente dicho (el primer dígito) seguido de un multiplicador (el resto de los dígitos del divisor), es decir, , donde es el divisor (9) y es el multiplicador (728). Los nombres en chino y japonés para este método de división (帰除 Guīchú en chino, 帰除法 Kijohou en japonés) se refieren a esto: 帰, Guī , Ki es el divisor propiamente dicho y 除, chú , jo es el multiplicador[6].

En este caso, la forma de actuar es la siguiente:

  1. Primero consideramos solo el divisor y hacemos exactamente lo mismo que en el caso del divisor de un solo dígito, es decir, seguimos la regla de división: obtenemos el cociente intermedio y sumamos el resto (de la regla) a la columna adyacente
  2. Luego restamos el producto del dividendo si podemos; de lo contrario, tenemos que revisar a la baja y devolver al resto o dividendo usando las siguientes reglas:
Reglas para revisar a la baja
Mientras se divide por: Revisar q a: Sumar al resto:
1 q-1 +1
2 q-1 +2
3 q-1 +3
4 q-1 +4
5 q-1 +5
6 q-1 +6
7 q-1 +7
8 q-1 +8
9 q-1 +9

Con esto, devolveremos al resto o dividendo lo que hemos restado de más al usar la regla de división errónea; pero si el multiplicador tiene más de una cifra y ya hemos procesado varias de ellas cuando reparamos en que el cociente provisional es excesivo, también tendremos que devolver lo sustraído de más sumando los dígitos que hemos usado del multiplicador (véase el ejemplo más abajo).

Ejemplo: 359936÷9728=37[editar]

Veamos primero el caso mencionado arriba

359936÷9728=37
Ábaco Comentario
ABCDEFGHIJKLM Divisor:9, Multiplicador: 728
9728   359936 Regla 3/9>3+3
9728  3 89936 cociente 3 en G, borrar H y sumar 3 a I
       -2184 restar 3✕multiplicador 3✕728=2184 de I-L
9728  3 68096 Regla 6/9>6+6
9728  3614096 cociente 6 en H, borrar I y sumar 6 a J
        -4368 restar 6✕multiplier 6✕728=4368 de J-M
9728  36 9728 revisión al alza
      +1-9728
9728  37 ¡Hecho!

Ejemplo 235÷59=3.98… (revisión a la baja)[editar]

235÷59=3.98…
Ábaco Comentario
ABCDEFGHIJ Divisor:5, Multiplicador: 9
59   235 Regla 2/5>4+0
59  4 35 cociente 4 a E, borrar F y sumar 0 a G
     -36 no se puede restar 4✕multiplicador 4✕9=36 de GH!
   -1+5 revisión a la baja siguiendo las reglas dadas arriba
59  3 85
     -27 restar 3✕multiplicador 3✕9=27 de GH
59  3 58 Regla 5/5>9+5
59  3913 cociente 9 a F, borrar G y sumar 5 a H
      -81 restar 9✕multiplicador 9✕9=81 de HI
59  39 49 Regla 4/5>8+0
   ... etc.

Ejemplo: 23711÷5928=3,9998… (revisión a la baja)[editar]

3711÷5928=3,9998…
Ábaco Comentario
ABCDEFGHIJKLMN Divisor: 5, Multiplicador: 928
5928   23711 Regla 2/5>4+0
5928  4 3711 cociente 4 a G, borrar H y sumar 0 a I
       -36 restar 4✕9=36 de IJ
5928  4  111
         -8 restar 4✕2=8 de JK
5928  4   31
         -32 no se puede restar 4✕8=32 de KL!
     -1+592 revisión a la baja devolviendo el exceso restado de IJK
5928  3 5951
         -24 continuando normalmente, restar 3✕8=24 de KL
5928  3 5927 Regla 5/5>9+5
    ... etc.

En este ejemplo el divisor es 5 y el multiplicador es 928. Cuando reparamos en que 4 es un cociente excesivo ya hemos restado del dividendo el producto de 4 por las dos primeras cifras del multiplicador (92); por lo tanto, para revisar a la baja y devolver al dividendo lo que hemos sustraído de más, deberemos:

  • Sumar 5 a la primera cifra del dividendo en I (de acuerdo a la tabla de arriba) para corregir lo que la aplicación de la regla se ha llevado de más.
  • Sumar las cifras usadas del multiplicador (92) a JK, que es lo que nos hemos llevado de más al sustraer en lugar de .

Ambas cosas combinadas se traducen en la suma de 592 al resto realizada arriba en IJK.

Disposición tradicional de la división (TDA)[editar]

Como se comentó anteriormente, hay dos formas básicas de organizar los problemas generales de división. Veámoslos uno al lado del otro:

  • Disposición moderna de la división (MDA), como lo explica Kojima[2] y como se ha explicado en el capítulo correspondiente de este libro,
MDA 25÷5=5
Ábaco Comentario
ABCDEF
5   25 El dividendo empieza en E
5  5 Trás la división el cociente empieza en D


  • Disposición tradicional de la división (TDA), usada en los libros antiguos desde los tiempos de las varillas de cálculo[7] hasta la primera parte del siglo XX[8],
TDA 25÷5=5
Ábaco Comentario
ABCDEF
5   25 El dividendo empieza en E
5   5 Trás la división el cociente empieza en E

Hasta ahora hemos utilizado MDA con la división tradicional sin ningún problema. TDA, sin embargo, es problemático con cualquier método de división, incluido el tradicional. Esta naturaleza problemática se debe a una colisión entre el divisor y el dividendo/resto que ocurre con frecuencia (es decir, ambos requieren el uso simultáneo de la misma columna), y se necesitan técnicas o ábacos especiales para hacer frente a esta colisión. A pesar de esto, la TDA se ha utilizado durante siglos junto con el método tradicional de división, al menos desde el siglo XIII, mientras que el MDA se ha dejado de lado hasta los tiempos modernos. Está claro que se pueden reconocer ciertas ventajas a TDA, pero no está tan claro que sean suficientes para justificar su uso histórico:

  • Utiliza una varilla menos
  • El resultado no se desplaza demasiado hacia la izquierda como en MDA, lo cual es de interés en el caso de operaciones encadenadas. Esto y el puntos anterior hacen que TDA sea más adecuado para ábacos con un número reducido de columnas, como el tradicional suanpan/soroban de 13 varillas.
  • Ahorra algunos movimientos de los dedos; por ejemplo, la operación 6231÷93 = 67 puede hacerse en 14 movimientos usando la división tradicional con TDA mientras que son necesarios 24 con MDA.
  • Los desplazamientos de las manos son más cortos.
  • Es menos propenso a errores ya que se saltan menos columnas.
Suanpan mostrando de 8 a 20 de izquierda a derecha, ilustrando el uso de las cuentas adicionales y "suspendidas".

La forma de tratar con la colisión mencionada es aceptar que la primera columna del dividendo o resto, después de la aplicación de las reglas de división, puede desbordar y tomar temporalmente un valor superior a 9 (hasta 18 es necesario en algunos casos), al tiempo que proporcionar algún mecanismo para hacer frente a tal desbordamiento. Curiosamente, parece que ningún texto antiguo explica cómo hacer esto último, aunque está claro que en el caso de un ábaco 5+2 o 5+3 usaremos las cuentas superiores adicionales para representar los valores de 10 a 20 en la columna desbordada, recurriendo a la cuenta suspendida (懸珠 xuán zhū en chino , kenshu en japonés) en el caso del ábaco 5+2. La tercera cuenta o la cuenta suspendida se requiere sólo en aproximadamente el 1% de los casos, lo que justifica la adopción del modelo 5+2 como el estándar en lugar del 5+3. En un capítulo posterior veremos cómo hacer frente al desbordamiento en un ábaco con sólo una cuenta superior.

Cuando se usa TDA

la regla a/b>q+r debe leerse: "cambiar a a q como dígito del cociente intermedio y sumar r a la cifra de la derecha".

Con TDA, la regla para encontrar la columna unidad es la siguiente

La columna de las unidades de los cocientes se ubica columnas a la izquierda de la columna de las unidades del dividendo; donde es el número de dígitos del divisor a la izquierda de su punto decimal (¡que puede ser negativo!).

La siguiente tabla muestra los valores de para algunos divisores:

Divisor n
32.7 2
3.27 1
0.327 0
0.00327 -2

Para ver ejemplos de TD usando TDA, consulte el capítulo: Ejemplos de división tradicional.

Acerca de la eficiencia de la división tradicional[editar]

Como puede ver en los ejemplos con divisores de un solo dígito, la eficiencia de TD se deteriora a medida que el divisor comienza con cifras más bajas, en el sentido de que tenemos que revisar al alza con más frecuencia. Podemos decir que la eficiencia es nula cuando el divisor empieza por 1; de hecho, ni siquiera tenemos reglas de división excepto 1/1> 9+1 (que es "estadísticamente" excesiva, consulte el capítulo: Aprender la tabla de división). Para este último caso, el truco es dividir por 2 in situ (capítulo: División por potencias de dos) tanto el divisor como el dividendo, lo cual es muy rápido, y proceder a dividir ambos resultados normalmente; ahora el divisor comenzará con un dígito entre 5 y 9 y la división tradicional resultará más eficiente. Por ejemplo:

Para dividir in situ por dos, simplemente trabaje de derecha a izquierda borrando un dígito de cada vez y sumando en su lugar su mitad:

Ilustrando la división in situ por 2
Ábaco Comentario
ABCDEFGHI
16    128 División por 2 in situ
16    124 mitad de 8
16    114 mitad de 2
16     64 mitad de 1
13     64 mitad de 6
 8     64 mitad de 1
 8     64 Regla 6/8>7+4
 8    7 8
     +1-8 revisión al alza
 8    8 ¡Hecho!

En otros casos, nuestra intuición y experiencia con MD podrían ayudarnos.

Esta menor eficiencia de TD en comparación con MD es el precio a pagar para ahorrarnos el trabajo mental de deducir la cifra del cociente provisional que tenemos que probar.

Referencias[editar]

  1. «割り算九九 (Warizan kuku, Tabla de dividir)» (en japonés). Wikipedia en japonés.
  2. 2,0 2,1 The Japanese Abacus: its Use and Theory. Tokyo: Charles E. Tuttle Co., Inc.. 1954. ISBN 978-0-8048-0278-9. https://archive.org/details/japaneseabacus00taka. 
  3. Xú Xīnlǔ (徐心魯) (1993) [1573] (en Chino). Pánzhū Suànfǎ (盤珠算法). Zhōngguó kēxué jìshù diǎnjí tōng huì (中國科學技術典籍通彙). 
  4. Yoshida, Mitsuyoshi (吉田光由) (1634) (en Japonés). Jinkoki (塵劫記). https://dl.ndl.go.jp/info:ndljp/pid/3508170/7. 
  5. Shinoda, Shosaku (篠田正作) (1895) (en Japonés). Jitsuyo Sanjutsu (実用算術). https://dl.ndl.go.jp/info:ndljp/pid/827128/5?tocOpened=1&itemId=info%3Andljp%2Fpid%2F827128&contentNo=5&__lang=en. 
  6. Lisheng Feng (2020). «Traditional Chinese Calculation Method with Abacus». En Jueming Hua; Lisheng Feng. Thirty Great Inventions of China. Jointly published by Springer Publishing and Elephant Press Co., Ltd. ISBN 978-981-15-6525-0. https://link.springer.com/book/10.1007%2F978-981-15-6525-0. 
  7. Zhū Shìjié 朱士傑 (1993) [1299] (en Chino). Suànxué Qǐméng (算學啟蒙). Zhōngguó kēxué jìshù diǎnjí tōng huì (中國科學技術典籍通彙). 
  8. Kwa Tak Ming (1922) (PDF). The Fundamental Operations in Bead Arithmetic, How to Use the Chinese Abacus. San Francisco: Service Supply Co.. https://archive.computerhistory.org/resources/access/text/2016/12/B1671.01-05-01-acc.pdf. 

Otras lecturas[editar]