Ir al contenido

Matemáticas/Generalidades/Símbolos Matemáticos/Lógica de predicados

De Wikilibros, la colección de libros de texto de contenido libre.

Lógica de predicados

[editar]
Símbolo Nombre se lee como Categoría

cuantificador universal para todos; para cualquier; para cada lógica de predicados
∀ x : P(x) significa: P(x) es verdadera para cualquier x
∀ n ∈ N: n² ≥ n

cuantificador existencial existe por lo menos un/os lógica de predicados
∃ x : P(x) significa: existe por lo menos un x tal que P(x) es verdadera.
∃ n ∈ N: n + 5 = 2n

cuantificador existencial con marca de unicidad existe un/os único/s lógica de predicados
∃!  x : P(x) significa: existe un único x tal que P(x) es verdadera.
∃!  n ∈ N: n + 1 = 2


reluz tal que lógica de predicados
∃ x : P(x) significa: existe por lo menos un x tal que P(x) es verdadera.
∃ n ∈ N: n + 5 = 2n