Fundamentos de Astrofísica/Física de los agujeros negros

De Wikilibros, la colección de libros de texto de contenido libre.

La física de los agujeros negros

Un agujero negro u hoyo negro es una región del espacio-tiempo provocada por una gran concentración de masa en su interior, con enorme aumento de la densidad, lo que provoca un campo gravitatorio tal que ninguna partícula material, ni siquiera los fotones de luz, puede escapar de dicha región, fueron descritos en el año 1783 por John Michell.

La curvatura del espacio-tiempo o «gravedad de un agujero negro» provoca una singularidad envuelta por una superficie cerrada, llamada horizonte de sucesos. Esto es debido a la gran cantidad de energía del objeto celeste.

El horizonte de sucesos separa la región de agujero negro del resto del Universo y es la superficie límite del espacio a partir de la cual ninguna partícula puede salir, incluyendo la luz. Dicha curvatura es estudiada por la relatividad general, la que predijo la existencia de los agujeros negros y fue su primer indicio.

El núcleo de la galaxia elíptica gigante M87, donde -hay evidencia de un agujero negro supermasivo. También se observa un potente chorro (jet (jet(astronomía)) de materia eyectada por los poderosos campos magnéticos generados por éste. Imagen tomada por el Telescopio espacial Hubble.


En 1963, Roy Kerr había demostrado que en un espacio-tiempo de cuatro dimensiones todos los agujeros negros debían tener una geometría cuasi-esférica determinada por tres parámetros: su masa M, su carga eléctrica total e y su momento angular L.

En los años 70, Hawking y Ellis demostraron varios teoremas importantes sobre la ocurrencia y geometría de los agujeros negros.

Se cree que en el centro de la mayoría de las galaxias, entre ellas la Vía Láctea, hay agujeros negros supermasivos. La existencia de agujeros negros está apoyada en observaciones astronómicas, en especial a través de la emisión de rayos X por estrellas binarias y galaxias activas.

Proceso de formación[editar]

El origen de los agujeros negros es planteado por el astrofísico Stephen Hawking en su libro titulado Agujeros negros y la historia del tiempo. Allí él mismo comenta acerca del proceso que da origen a la formación de los agujeros negros.

Dicho proceso comienza posteriormente a la muerte de una gigante roja (estrella de gran masa), llámese muerte a la extinción total de su energía. Posteriormente al pasar varios miles de millones de años la fuerza gravitatoria de dicha estrella comienza a ejercer fuerza sobre si mismo originando una masa concentrada en un pequeño volumen, convirtiéndose de ese modo en una enana blanca. En este punto dicho proceso puede proseguir hasta el colapso de dicho astro por la auto atracción gravitatoria que termina por convertir a esta enana blanca en un agujero negro.

Este proceso acaba por reunir una fuerza de atracción tan fuerte que atrapa hasta la luz en éste.


Historia del agujero negro[editar]

El concepto de un cuerpo tan denso que ni la luz pudiese escapar de él, fue descrito en un artículo enviado en 1783 a la Royal Society por un geólogo inglés llamado John Michell.

Imagen simulada de como se vería un agujero negro con una masa de diez soles, a una distancia de 600 kilómetros, con la vía láctea al fondo (ángulo horizontal de la abertura de la cámara fotográfica: 90°).

Por aquel entonces la teoría de Newton de gravitación y el concepto de velocidad de escape eran muy conocidas. Michell calculó que un cuerpo con un radio 500 veces el del Sol y la misma densidad tendría, en su superficie, una velocidad de escape igual a la de la luz y sería invisible.

Pierre-Simon Laplace[editar]

En 1796, el matemático francés Pierre-Simon Laplace explicó en las dos primeras ediciones de su libro Exposition du Systeme du Monde la misma idea aunque, al ganar terreno la idea de que la luz era una onda sin masa, en el siglo XIX fue descartada en ediciones posteriores.

Albert Einstein[editar]

En 1915, Einstein desarrolló la relatividad general y demostró que la luz era influenciada por la interacción gravitatoria.

Agujeros negros de Kerr y de Schwarzschild[editar]

Unos meses después, Karl Schwarzschild encontró una solución a las ecuaciones de Einstein, donde un cuerpo pesado absorbería la luz. Se sabe ahora que el radio de Schwarzschild es el radio del horizonte de sucesos de un agujero negro que no gira, pero esto no era bien entendido en aquel entonces. El propio Schwarzschild pensó que no era más que una solución matemática, no física.

Subrahmanyan Chandrasekhar[editar]

En 1930, Subrahmanyan Chandrasekhar demostró que un cuerpo con una masa crítica, (ahora conocida como límite de Chandrasekhar) y que no emitiese radiación, colapsaría por su propia gravedad porque no había nada que se conociera que pudiera frenarla (para dicha masa la fuerza de atracción gravitatoria sería mayor que la proporcionada por el principio de exclusión de Pauli). Sin embargo, Eddington se opuso a la idea de que la estrella alcanzaría un tamaño nulo, lo que implicaría una singularidad desnuda de materia, y que debería haber algo que inevitablemente pusiera freno al colapso, línea adoptada por la mayoría de los científicos. Posteriormente se ha probado que el límite de Chandrasekhar es correcto, y Subrahmanyan Chandrasekhar recibió el Premio Nobel de Física en 1983.

Robert Oppenheimer[editar]

En 1939, Robert Oppenheimer predijo que una estrella masiva podría sufrir un colapso gravitatorio y, por tanto, los agujeros negros podrían ser formados en la naturaleza. Esta teoría no fue objeto de mucha atención hasta los años 60 porque, después de la Segunda Guerra Mundial, se tenía más interés en lo que sucedía a escala atómica.


Estudios de Hawking, Penrose y Bekenstein[editar]

En 1967, Stephen Hawking y Roger Penrose probaron que los agujeros negros son soluciones a las ecuaciones de Einstein y que en determinados casos no se podía impedir que se crease un agujero negro a partir de un colapso. La idea de agujero negro tomó fuerza con los avances científicos y experimentales que llevaron al descubrimiento de los púlsares. Poco después, el término "agujero negro" fue acuñado por John Wheeler.

Jacob David Bekenstein es un físico teórico que investiga la relación entre los agujeros negros, su entropía y su relación con la teoría de la información, también estudia la teoría gravitacional, la magnetohidrodinámica relativista y la dinámica galáctica.

Teorías de Smolin y Jayant Narlikar[editar]

La teoría de los universos fecundos o de selección natural cosmológica es una teoría del físico Lee Smolin, que aplica criterios semejantes a los de la selección natural darwiniana a la cosmología, de suerte que el universo conocido podría ser el resultado de una evolución y una mutación de universos anteriores.

Smolin considera teóricamente que el colapso de un agujero negro provoca la aparición de un nuevo universo del "otro lado" de la singularidad, tal universo podría tener leyes, constantes y parámetros propios, algo diferentes del universo conocido (por ejemplo otra velocidad de propagación máxima, diferente de c, otras constantes cosmológicas etc.). Así, esta noción biologicista del universo supone posibles "reproducciones" y "mutaciones" de universos, lo que conlleva implícita la noción de un multiverso. Cabe considerar que tal biologicismo no es exactamente análogo al de los procesos biológicos reducidos de la Tierra.

La idea de una evolución y una mutación de universos supone también la existencia de universos "más primitivos" (acaso más simples). Según expresa Smolin en The Life of the Cosmos (La vida del cosmos), los universos dominantes podrían ser aquellos que poseyeran más agujeros negros.

Jayant Vishnu Narlikar es un astrofísico indio, se le considera uno de los principales expertos y defensores de la Teoría del Estado Estacionario en cosmología, algunos de sus libros son "de nubes blancas a agujeros negros", "La estructura del universo" y "Fenómenos violentos en el universo".

Clasificación teórica[editar]

Según su origen: Teóricamente pueden existir al menos tres clases de agujeros negros:

Agujeros negros primordiales: Aquellos que fueron creados temprano en la historia del Universo. Sus masas pueden ser variadas y ninguno ha sido observado.

Según la masa:

  • Microagujeros Negros:

Un microagujero negro, también llamado agujero negro de mecánica cuántica e inevitablemente miniagujero negro, es un simple agujero negro pequeño, en el que los efectos de la mecánica cuántica juegan un importante rol.

  • Agujeros negros de masa estelar:

Se forman cuando una estrella de masa 2,5 mayor que la masa del Sol se convierte en supernova e implosiona. Su núcleo se concentra en un volumen muy pequeño que cada vez se va reduciendo más.

  • Agujeros negros supermasivos:

con masas de varios millones de masas solares. Son el corazón de muchas galaxias. Se forman en el mismo proceso que da origen a las componentes esféricas de las galaxias.


Según el momento angular

Un agujero negro sin carga y sin momento angular es un agujero negro de Schwarzschild, mientras que un agujero negro rotatorio (con momento angular mayor que 0), se denomina agujero negro de Kerr.


Zonas observables[editar]

En las cercanías de un agujero negro se suele formar un disco de acrecimiento. Lo compone la materia con momento angular, carga eléctrica y masa, la que es afectada por la enorme atracción gravitatoria del mismo, ocasionando que inexorablemente atraviese el horizonte de sucesos y, por lo tanto, lo incremente.

Visión de un artista de un agujero negro con disco de acreción.

En cuanto a la luz que atraviesa la zona del disco, también es afectada, tal como está previsto por la Teoría de la Relatividad. El efecto es visible desde la Tierra por la desviación momentánea que produce en posiciones estelares conocidas, cuando los haces de luz procedentes de las mismas transitan dicha zona.

Impresión de un artista de un agujero negro con una estrella del compañero de cerca que se mueve en órbita alrededor que excede su límite de Roche. la materia en que cae forma un disco de acrecimiento, con algo de la materia que es expulsada en chorros polares (jet) colimados altamente energéticos.

Hasta hoy es imposible describir lo que sucede en el interior de un agujero negro; sólo se puede imaginar, suponer y observar sus efectos sobre la materia y la energía en las zonas externas y cercanas al horizonte de sucesos y la ergosfera.

Uno de los efectos más controvertidos que implica la existencia de un agujero negro es su aparente capacidad para disminuir la entropía del Universo, lo que violaría los fundamentos de la termodinámica, ya que toda materia y energía electromagnética que atraviese dicho horizonte de sucesos, tienen asociados un nivel de entropía. Stephen Hawking propone en su último libro que la única forma que no aumente la entropía sería que la información de todo lo que atraviese el horizonte de sucesos siga existiendo de alguna forma.

Otra de las implicaciones de un agujero negro supermasivo sería la probabilidad que fuese capaz de generar su colapso completo, convirtiéndose en una singularidad desnuda de materia.

La entropía en los agujeros negros[editar]

Según Stephen Hawking, en los agujeros negros se viola el segundo principio de la termodinámica, lo que dio pie a especulaciones sobre viajes en el espacio-tiempo y agujeros de gusano. El tema está siendo motivo de revisión; actualmente Hawking se ha retractado de su teoría inicial y ha admitido que la entropía de la materia se conserva en el interior de un agujero negro (véase enlace externo). Según Hawking, a pesar de la imposibilidad física de escape de un agujero negro, estos pueden terminar evaporándose por la llamada radiación de Hawking, una fuente de rayos X que escapa del horizonte de sucesos.

El legado que entrega Hawking en esta materia es de aquellos que, con poca frecuencia en física, son calificados de bellos. Entrega los elementos matemáticos para comprender que los agujeros negros tienen una entropía gravitacional intrínseca. Ello implica que la gravedad introduce un nivel adicional de impredictibilidad por sobre la incertidumbre cuántica. Parece, en función de la actual capacidad teórica, de observación y experimental, como si la naturaleza asumiera decisiones al azar o, en su efecto, alejadas de leyes precisas más generales.

La hipótesis de que los agujeros negros contienen una entropía y que, además, ésta es finita, requiere para ser consecuente que tales agujeros emitan radiaciones térmicas, lo que al principio parece increíble. La explicación es que la radiación emitida escapa del agujero negro, de una región de la que el observador exterior no conoce más que su masa, su momento angular y su carga eléctrica. Eso significa que son igualmente probables todas las combinaciones o configuraciones de radiaciones de partículas que tengan energía, momento angular y carga eléctrica iguales. Son muchas las posibilidades de entes, si se quiere hasta de los más exóticos, que pueden ser emitidos por un agujero negro, pero ello corresponde a un número reducido de configuraciones. El número mayor de configuraciones corresponde con mucho a una emisión con un espectro que es casi térmico.

Físicos como Jacob D. Bekenstein han relacionado a los agujeros negros y su entropía con la teoría de la información.

Los agujeros negros en la física actual[editar]

Se explican los fenómenos físicos mediante dos teorías que se contradicen entre ellas; la mecánica cuántica, que explica la naturaleza de «lo muy pequeño», donde predomina el caos y la estadística, y la relatividad general, que explica la naturaleza de «lo muy pesado» y que afirma que en todo momento se puede saber con exactitud dónde está un cuerpo. Cualquiera de estas teorías están experimentalmente confirmadas pero, al intentar explicar la naturaleza de un agujero negro, es necesario discernir si se aplica la cuántica por ser algo muy pequeño o la relatividad por ser algo tan pesado. Está claro que hasta que no se disponga de una física más avanzada no se conseguirá explicar realmente la naturaleza de este fenómeno.

Descubrimientos recientes[editar]

En 1995 un equipo de investigadores de la UCLA dirigido por Andrea Ghez demostró mediante simulación por ordenadores la posibilidad de la existencia de agujeros negros supermasivos en el núcleo de las galaxias. Tras estos cálculos mediante el sistema de óptica adaptable se verificó que algo deformaba los rayos de luz emitidos desde el centro de nuestra galaxia (la Vía Láctea). Tal deformación se debe a un invisible agujero negro supermasivo que ha sido denominado Sgr.A (o Sagittarius A), al mismo se le supone una masa 4,5 millones de veces mayor que la del Sol. El agujero negro supermasivo del centro de nuestra galaxia actualmente sería poco activo ya que ha consumido gran parte de la materia bariónica, que se encuentra en la zona de su inmediato campo gravitatorio y emite grandes cantidades de radiación. En diciembre de 2008 un equipo del Instituto Max Planck dirigido por Reinhard Genzel confirma la existencia de tal agujero negro supermasivo en el centro de la Vía Láctea calculándosele una masa de 4 millones de soles y considerándole a una distancia de 27.000 años luz (unos 254.000 millones de km respecto de la Tierra).

Por su parte la astrofísica Feryal Özel ha explicado algunas características probables en torno a un agujero negro: cualquier cosa, incluido el espacio, que entre en la fuerza de marea provocada por un agujero negro se aceleraría a extremada velocidad como en un vórtice y todo el tiempo dentro del área de atracción de un agujero negro se dirigiría hacia el mismo agujero negro.

En el presente se considera que, pese a la perspectiva destructiva que se tiene de los agujeros negros, éstos al condensar en torno a sí materia sirven en parte a la constitución de las galaxias y a la formación de nuevas estrellas.

En junio de 2004 astrónomos descubrieron un agujero negro súper masivo, el Q0906+6930, en el centro de una galaxia distante a unos 12.700 millones de años luz. Esta observación indicó una rápida creación de agujeros negros súper masivos en el Universo joven.

La formación de micro agujeros negros en los aceleradores de partículas ha sido informada,[2] pero no confirmada. Por ahora, no hay candidatos observados para ser agujeros negros primordiales.

El mayor agujero negro

En el año 2007 se descubrió el agujero negro denominado IC 10 X-1. Está en la constelación de Casiopea cerca de la galaxia IC 10, a una distancia de 1,8 millones de años luz de la Tierra, con una masa de entre 24 y 33 veces la de nuestro Sol, y se considera el mayor agujero negro que orbita alrededor de una estrella, o agujero negro "de masa estelar", hasta la fecha.[3] Posteriormente, en abril de 2008, la revista Nature publicó un estudio realizado en la Universidad de Turku (Finlandia). Según dicho estudio, un equipo de científicos dirigido por Mauri Valtonen descubrió un sistema binario, un blazar, llamado OJ287. Tal sistema estaría constituido por un agujero negro menor que orbita en torno a otro mayor, siendo la masa del mayor de 18.000 millones de veces la de nuestro Sol. Se supone que en cada intervalo de rotación el agujero negro menor golpea la ergosfera del mayor dos veces, generándose un quásar.

El menor agujero negro

Sin contar los posibles microagujeros negros que casi siempre son efímeros al producirse a escalas subatómicas; macroscópicamente en abril de 2008 el equipo coordinado por Nikolai Saposhnikov y Lev Titarchuk ha identificado el más pequeño de los agujeros negros conocidos hasta la fecha; ha sido denominado J 1650, se ubica en la constelación Ara (o Altar) de la Vía Láctea (la misma galaxia de la cual forma parte la Tierra). J 1650 tiene una masa equivalente a 3,8 soles y tan solo 24 km de diámetro se habría formado por el colapso de una estrella; tales dimensiones estaban previstas por las ecuaciones de Einstein. Se considera que son prácticamente las dimensiones mínimas que puede tener un agujero negro ya que una estrella que colapsara y produjera un fenómeno de menor masa se transformaría en una estrella de neutrones. Se considera que pueden existir muchos más agujeros negros de dimensiones semejantes.

Chorros de plasma

En abril de 2008 la revista Nature publicó un estudio realizado en la Universidad de Boston dirigido por Alan Marscher explica que chorros de plasma colimados parten de campos magnéticos ubicados cerca del borde de los agujeros negros. En zonas puntuales de tales campos magnéticos los chorros de plasma son orientados y acelerados a velocidades cercanas a C (velocidad de la luz), tal proceso es comparable a la aceleración de partículas para crear una corriente de chorro (jet) en un reactor. Cuando los chorros de plasma que son originados por un agujero negro son observables desde la Tierra tal tipo de agujero negro entra en la categoría de blazar.

Que un agujero negro "emita" radiaciones parece una contradicción, sin embargo esto se explica: todo objeto (supóngase una estrella) que es atrapado por la gravitación de un agujero negro, antes de ser completamente "engullido", antes de pasar tras el horizonte de sucesos, se encuentra tan fuertemente presionado por las fuerzas de marea del agujero negro en la zona de la ergosfera que una pequeña parte de su materia sale disparada a velocidades próximas a la de la luz (como cuando se aprieta fuertemente una naranja: parte del material de la naranja sale eyectado en forma de chorros de jugo, en el caso de los objetos atrapados por un agujero negro, parte de su masa sale disparada centrífugamente en forma de radiación fuera del campo gravitatorio de la singularidad).


Agujero negro: ¿Un universo en formación?[editar]

Nuevas estrellas podrían formarse a partir de los discos elípticos en torno a agujeros negros; tales discos elípticos se producen por antiguas nubes de gas desintegradas previamente por los mismos agujeros negros; las estrellas producidas por condensación o acreción de tales discos elípticos al parecer tienen órbitas muy elípticas en torno a los agujeros negros supermasivos.

Enlaces[editar]

http://es.wikipedia.org/wiki/Agujero_negro

http://es.wikipedia.org/wiki/Jet_(astronom%C3%ADa)

http://es.wikipedia.org/wiki/Blazar

http://es.wikipedia.org/wiki/Cu%C3%A1sar

http://es.wikipedia.org/wiki/Agujero_negro_de_mec%C3%A1nica_cu%C3%A1ntica

http://es.wikipedia.org/wiki/Termodin%C3%A1mica

http://es.wikipedia.org/wiki/Entrop%C3%ADa_(termodin%C3%A1mica)

http://es.wikipedia.org/wiki/Lee_Smolin

http://es.wikipedia.org/wiki/Teor%C3%ADa_de_los_universos_fecundos