Ir al contenido

Comunicaciones Unificadas Con Elastix/Introducción a la Telefonía

De Wikilibros, la colección de libros de texto de contenido libre.

No importa si yo muero, otros terminarán mi trabajo... --Mark Twain

Breve historia de la telefonía[editar]

Sin duda la invención de lo que hoy conocemos como telefonía debió ser un acto asombroso en su tiempo, casi mágico. El oír la voz de alguien remoto en tiempo real saliendo de una misteriosa caja en una época en la que esto era solo posible en la ciencia ficción debió haber sido una experiencia única y casi fantástica.

De seguro que la idea de un aparato parlante ya rondaba por la cabeza de muchos inventores desde tiempos inmemoriales, pero fue a inicios del siglo 19 cuando parecía algo alcanzable pues ya se había descubierto la electricidad, inventado el telégrafo y algunos ya experimentaban con ondas de radio.

Los albores de la telefonía[editar]

A mediados del siglo 19 hubo un interesante movimiento en torno a lo que hoy conocemos como teléfono.

En 1849 Antonio Meucci, médico italiano considerado por muchos como el inventor del teléfono, hizo una demostración de un dispositivo capaz de transmitir voz en La Habana. Pocos años después, en 1854, el mismo Meucci hace una nueva demostración de su invención en la ciudad de Nueva York.

Mientras Meucci se las daba a las tareas de inventor, otros también perseguían la idea de construir un “telégrafo parlante” y es así como en 1860 el alemán Johann Philipp Reis construye un dispositivo capaz de transmitir voz basado en la idea original de Charles Bourseul, quien a su vez describió la construcción de dicho dispositivo en 1854 pero nunca lo construyó. Reis continuó mejorando su aparato y un año más tarde ya estaba transmitiendo voz a más de 100 metros de distancia.

Teléfono de Reis

Un par de años más tarde Innocenzo Manzetti construye el esperado “telégrafo parlante” que él mismo había visionado ya en 1844, pero no se interesa en patentarlo.

Ahora podemos ver con más claridad que los números uno (1) en la máscara marcan el límite entre la parte de la red y la parte del host por lo tanto la dirección de red es (en binario):

10000010.00000101.00000101.00000000

Todos los números binarios a la derecha de la máscara se completan con ceros. Ah cierto, olvidamos volver a convertir la dirección de red anterior a decimal. Veamos qué obtenemos:

10000010.00000101.00000101.00000000 -> 130.5.5.0

Lo que quiere decir que la dirección IP 130.5.5.26 pertenece a la red 130.5.5.0. Ahora el ruteador ya puede decidir hacia qué red enviar nuestro paquete IP.

Los dolores de cabeza de las famosas patentes[editar]

Hasta aquí ya existían algunos prototipos de teléfono pero nadie lo había patentado. El primero en tratar de patentar el invento fue Meucci, quien en 1871 suscribió un documento de “aviso de patente” pero por su condición económica nunca pudo pagar el dinero para terminar este trámite y su “aviso de patente” expiró pocos años después.

A Meucci no le fue muy bien que digamos pues no pudo vender su invento y alcanzar la prosperidad.

En 1875, un año después de expirar el trámite de patente de Meucci, Alexander Graham Bell, un escocés radicado en los Estados Unidos, logra patentar un aparato similar y es el primero en patentarlo.

Bell había estado experimentando previamente con algunas ideas para concebir su dispositivo telefónico hasta que un día logró arrancarle a la electricidad algunos sonidos. Cuenta la historia que la primera llamada que hizo fue para llamar a su asistente pronunciando las célebres frases “Sr. Watson, venga, necesito verlo” (Mr. Watson... come here... I want to see you).

Un hecho curioso que desató mucha polémica es que otro inventor llamado Elisha Gray también trató de patentar un invento similar tan solo unas pocas horas después de Bell. Los dos inventores entraron en una conocida disputa legal que finalmente Bell ganó.

Gracias a la patente Bell pudo hacer de la idea del teléfono un negocio rentable y tiene el mérito de haber desarrollado la idea y convertirla en algo práctico para la sociedad.

Ilustración de dos personas hablando por teléfono a finales del siglo IXX

Se cuenta que en determinado momento Bell trató de vender su patente a Western Union por $100 mil dólares pero el presidente de Western Union se negó pues consideró que el teléfono “era nada más que un juguete”. Tan solo dos años más tarde el mismo directivo de Western Union le comentó a sus colegas que si pudiera conseguir la patente de Bell por $25 millones de dólares lo consideraría una ganga.

Esto nos da una idea de cómo comenzaba a crecer el negocio de Bell. En 1886, ya existían más de 150,000 abonados telefónicos en los Estados Unidos.

A partir de aquí la telefonía poco a poco se empezó a convertir en un servicio básico de la sociedad actual.

El desarrollo de la tecnología telefónica[editar]

Como sucede siempre con los avances tecnológicos la telefonía continuó evolucionando. Al principio, para que un abonado se comunicara con otro este tenía que solicitarle la llamada a una operadora, quien manualmente conectaba los cables para conmutar un punto con otro. En 1891 se inventó un teléfono “automático” que permitía marcar directamente.

En un principio Bell fue casi exclusivamente la única compañía en explotar la tecnología debido a sus patentes. Sin embargo, cuando estas expiraron nacieron cientos de pequeñas compañías que empezaron a dar servicio, la mayoría en sitios rurales donde Bell aún no llegaba. Poco a poco estas compañías empezaron a crecer y ya a inicios del siglo 20 tenían en su conjunto más abonados que la propia Bell. La sana competencia hizo lo suyo y la tecnología telefónica aceleró su evolución.

Ya para finales de la segunda guerra mundial el servicio telefónico llegaba a millones de abonados.

En 1947, científicos de Bell inventan el transistor y cambian el curso de la historia de la humanidad. En 1948 ganan el Premio Nobel por su trabajo.

En los años 60s se lanzan los primeros satélites de comunicaciones y las comunicaciones entre continentes se facilitan. No está demás decir que esto no hubiera sido posible sin la previa invención del transistor.

Principios y transmisión de la voz humana[editar]

La voz humana está compuesta por ondas acústicas que viajan a través del aire a la velocidad del sonido, esto es a 1,244 km/h (o 340 m/s). Bastante rápido verdad? Incluso más rápido que un avión comercial. Pero esta rapidez no significa que me pueda comunicar fácilmente con puntos distantes pues la voz humana se atenúa rápidamente, perdiendo energía a medida que viaja. Luego de unos pocos metros ya no podemos escuchar una conversación.

La voz humana por tanto es de la misma naturaleza que el resto de ondas acústicas y esto ya se conocía desde antes de la invención del teléfono.

Antes de la invención del teléfono también se conocía que existían otros tipos de ondas llamadas ondas eléctricas que podían ser transmitidas a través de un conductor metálico como un cable de cobre. Este segundo tipo de ondas es de una naturaleza diferente a las ondas acústicas y viaja a la velocidad de la luz, es decir aproximadamente 300,000 km/s. Es decir, más de lo que podamos imaginar; casi instantáneamente desde un punto de vista terrenal. Adicionalmente podemos controlar la atenuación de estas ondas y hacerlas viajar por grandes distancias.

Con estos hechos conocidos ya a mediados del siglo 19 es más fácil comprender que muchos persiguieran la idea de transformar las ondas acústicas en ondas eléctricas para así poder transmitirlas luego a grandes distancias a través de conductores metálicos. La cuestión es que había que inventar un dispositivo para hacer dicha transformación y allí estaba la clave del asunto. Este dispositivo, conocido como micrófono en nuestros días es una parte importante de cualquier aparato telefónico.

Rango de frecuencias de la voz humana[editar]

Otra característica importante de la voz humana es que las cuerdas vocales modulan la voz en un amplio espectro de frecuencias que van de graves a agudos en un rango aproximado de 20Hz a 20kHz. Todo un abanico de sonidos!

Esto nos hace suponer que un micrófono debe ser capaz de capturar y transmitir todo este rango de frecuencias. Sin embargo, en la actualidad sabemos que para transmitir voz "entendible" no es necesario transmitir todas las frecuencias sino un rango mucho menor y transmitir un rango menor de frecuencias tiene sus ventajas pues facilita la transmisión como veremos más adelante. Por lo tanto los teléfonos comerciales solo transmiten un rango aproximado de 400Hz a 4kHz. Esto distorsiona un poquito la voz pero de todas maneras se puede entender. Es por eso que cuando oímos a alguien por teléfono su voz suena ligeramente diferente que en la vida real pero aun así podemos entender la conversación.

El micrófono[editar]

El micrófono fue un elemento clave en la invención del teléfono pues era el dispositivo que realizaba la conversión de las ondas mecánicas a ondas eléctricas.

Hay muchos tipos de micrófonos que operan sobre diferentes principios. Uno que se usó por mucho tiempo en teléfonos era el de carbón que consistía en una cápsula llena de granitos de carbón entre dos placas metálicas. Una de las placas era una membrana que vibraba con las ligeras presiones de las ondas de voz; de esta manera la resistencia eléctrica de la cápsula variaba con la voz y se generaba una señal eléctrica correspondiente.

Típico micrófono de carbón extraído de teléfono de disco
Diagrama esquemático de micrófono electro-magnético

Otro tipo de micrófono muy común en la actualidad es el dinámico o electro-magnético que consiste en una bobina de hilo de cobre enrollada sobre un núcleo de material ferromagnético. Este núcleo se encuentra sujetado a un diafragma que vibra con la presión de las ondas de voz. De esta manera se induce una ligera corriente eléctrica en la bobina que es amplificada luego al interior del teléfono.

En la figura anterior podemos observar algunos componentes del micrófono electro- magnético reaccionando frente al estímulo de las ondas de voz.

  1. Ondas de voz
  2. Diafragma
  3. Bobina
  4. Núcleo ferromagnético
  5. Corriente inducida

Ancho de banda y capacidad de información[editar]

Ancho de banda es un término algo difícil de entender al principio pues es un concepto bastante amplio.

En general podemos decir que ancho de banda es una medida de la cantidad de información que podemos transmitir por un medio por unidad de tiempo. Debido a que es una medida por unidad de tiempo muchas veces se hace una analogía con la velocidad. Pero hay que estar atento a confusiones.

Medidas comunes para expresar el ancho de banda son los bits por segundo. Esta medida también equivale a bits/s, bps o baudios.

El ancho de banda es un término muy importante cuando se habla de telefonía pues las comunicaciones en tiempo real necesitan un ancho de banda mínimo asegurado para entregar una comunicación de calidad en destino.

Digitalización de la voz[editar]

Las redes digitales de transmisión de voz y datos son comunes en nuestra era. Fueron creadas ya que presentan ciertas ventajas sobre las redes analógicas como por ejemplo que conservan la señal casi inalterable a través de su recorrido. Es decir que es más difícil que la comunicación se vea afectada por factores externos como el ruido eléctrico. Además nos provee de métodos para verificar de cuándo en cuando la integridad de la señal, entre otras ventajas.

Dicho fácil, digitalizar una señal de voz no es otra cosa que tomar muestras (a intervalos de tiempo regulares) de la amplitud de la señal analógica y transformar esta información a binario. Este proceso de denomina muestreo.

Teorema de Nyquist[editar]

En 1928 Henry Nyquist, un ingeniero Suizo que trabajaba para AT&T, resolvió el dilema de cuánto es necesario muestrear una señal como mínimo para poder reconstruirla luego de forma exacta a la original.

El teorema propuesto decía que como mínimo se necesita el doble de ancho de banda como frecuencia de muestreo. Esto queda reflejado de mejor manera con la siguiente expresión.



Hagamos un breve cálculo mental acerca de cual sería la frecuencia de muestreo para poder convertir una señal de voz humana a digital y luego poder reconstruirla en destino.

Ya habíamos dicho que para que la voz humana sea entendible es suficiente transmitir un rango de frecuencias de entre 400Hz a 4,000Hz. Por lo tanto, según el teorema de Nyquist como mínimo deberíamos muestrear al doble de la frecuencia mayor, es decir a 8,000Hz

Luego veremos que es precisamente esa frecuencia de muestreo de 8,000Hz la que se usa en la mayoría de codecs. Gracias Nyquist!

Redes orientadas a circuitos[editar]

Las redes orientadas a circuitos (circuit switched) son aquellas donde se establece un circuito exclusivo o dedicado entre los nodos antes de que los usuarios se puedan comunicar.

Una vez que se establece un circuito entre dos puntos que quieren comunicarse, el resultado básicamente es el equivalente a conectar físicamente un par de cables de un extremo a otro. Una vez establecido el circuito, éste ya no puede ser usado por otros.

En cada circuito el retardo es constante, lo cual es una ventaja. Sin embargo, este tipo de redes es costoso debido al mismo hecho de que se necesita un circuito dedicado para cada abonado.

Este tipo de redes es el tradicionalmente usado por compañías telefónicas alrededor del mundo y es el mismo que usó Bell en sus inicios; obviamente guardando las distancias tecnológicas correspondientes.

Es común que ciertas personas confundan las redes de circuitos con las redes analógicas pero es necesario aclarar que las redes de circuitos bien pueden transportar datos digitalmente.

Redes orientadas a paquetes[editar]

Una red de paquetes es una red que por un mismo medio trafica simultáneamente diferentes flujos de información. Para hacer esto divide el tráfico de cada flujo de información en fragmentos o paquetes que envía intercaladamente. Luego, en el destino los paquetes se reensamblan para reproducir el mensaje original.

Un ejemplo de este tipo de redes son las redes IP como es el caso del Internet, donde por una misma conexión pueden llegarnos distintos flujos de información. De esta manera podemos estar haciendo video-conferencia al mismo tiempo que enviamos un correo electrónico o navegamos por el Web. Inclusive por este tipo de redes pueden circular simultáneamente flujos de información para diferentes destinos o direcciones IP.

A diferencia de las redes orientadas a circuitos, en este tipo de redes el ancho de banda no es fijo ya que depende del tráfico de la red en un momento dado. Adicionalmente cada paquete de un mismo flujo de información no está obligado a seguir el mismo camino por lo que los paquetes que originalmente fueron generados en secuencia pueden llegar desordenados a su destino. Este tipo de factores son muy importantes a tener en cuenta cuando se trafica voz sobre una red de paquetes ya que afectan la calidad de la llamada.

Las redes de paquetes se han vuelto populares, principalmente porque optimizan recursos debido al hecho de poder utilizar el mismo medio para enviar varios flujos de información.

Red Pública Telefónica (PSTN)[editar]

La Red Pública Telefónica o PSTN (por sus siglas en inglés) es básicamente una red basada en circuitos. Esta red cubre tanto telefonía fija como móvil y es la red que hace posible que podamos comunicarnos con cualquier persona en nuestra ciudad o alrededor del mundo.

Originalmente fue una red analógica pero actualmente es una red en su mayoría digital; por tanto existen dos tipos de circuitos: analógicos y digitales.

Circuitos analógicos[editar]

Los circuitos analógicos son básicamente pares de cobre que llegan a los abonados del servicio telefónico y por donde se transmite la señal eléctrica de la voz de manera analógica. El mismo circuito lleva adicionalmente la señalización necesaria para establecer, mantener y terminar una llamada. Estos circuitos analógicos se deben conectar a un switch telefónico encargado de direccionar la comunicación entre los abonados.

Los circuitos analógicos están en decadencia pues las compañías telefónicas encontraron muchas ventajas en las comunicaciones digitales y es por esa razón que pese a que en la actualidad aún vemos circuitos analógicos esto se trata tan solo de la “última milla”. En cierto punto de la red telefónica esta comunicación es convertida a digital y transmitida a un switch telefónico digital.

La circuitería analógica comúnmente se asocia con el término de “telefonía tradicional”.

Como en el pasado era más común que los teléfonos pudieran estar ubicados en áreas rurales donde no llegaba la electricidad se decidió que la red telefónica proveyera cierto voltaje de alimentación. Es por eso que algunos modelos de teléfonos analógicos no necesitan conectarse a la alimentación eléctrica.

En todo caso la OC (Oficina Central) genera 48 Voltios de corriente directa para alimentar a los teléfonos de los abonados. Usando léxico estricto deberíamos decir -48 Voltios debido a que este voltaje se mide con respecto a uno de los conductores. Sin embargo para ser prácticos en este libro usaremos indistintamente 48V o -48V para referirnos a lo mismo.

Señalización analógica[editar]

Para que las llamadas telefónicas funcionen correctamente es necesario contar con indicaciones o señales eléctricas que nos permitan intercambiar información entre el abonado y la OC. En breve veremos en qué consisten las señales más comunes.

Existen básicamente 3 métodos de señalización analógica que la industria ha desarrollado a través de los años. Estos se llaman loop start, ground start y kewlstart. Es importante cuando se configura una central telefónica que va conectada a una línea analógica que escojamos el método de señalización adecuado pues caso contrario podemos encontrarnos con problemas extraños como que la línea se cuelga inesperadamente o que no podemos colgar la línea correctamente, entre otras cosas.

La diferencia entre loop start y ground start radica en la manera en la que el teléfono requiere tono de marcado a la OC (proceso también llamado zeisure). Ground start requiere tono de marcado aterrizando (de allí el término ground) uno de los conductores de la línea telefónica mientras que loop start lo hace realizando un corto circuito entre ambos conductores (es decir creando un lazo o loop).

Kewlstart es una evolución de loop start que le añade un poco más de inteligencia a la detección de desconexiones (colgado de la llamada) pero básicamente sigue siendo un loop start.

Debido a que ground start no es muy común en nuestros días, casi siempre nos veremos usando loop start.

A continuación explicaremos más al detalle la señalización analógica para los eventos más comunes. Para hacerlo nos basaremos en el progreso de una llamada típica usando señalización loop start. El progreso de una llamada lo podemos dividir en seis instancias: colgado (on-hook), descolgado, marcación, conmutación, ringado y conversación.

Colgado[editar]

Mientras el teléfono está colgado la OC provee un voltaje DC de 48 Voltios. El teléfono mantiene un circuito abierto con la línea telefónica; es decir que actúa como si no estuviera conectado y por lo tanto no fluye corriente por la línea.

Este estado también es conocido como on-hook por su significado en inglés

Descolgado[editar]

Cuando el usuario descuelga el auricular el teléfono envía una señal a la OC. Esta señal consiste en cerrar el circuito, es decir que internamente el teléfono conecta entre sí los dos cables de la línea telefónica a través de una resistencia eléctrica.

Apenas la OC se da cuenta de esto envía tono de marcado al teléfono. Este tono de marcado le indica al abonado que ya puede marcar el número.

En gran parte de América el tono de marcado consiste en dos ondas senoidales enviadas simultáneamente. Estas ondas son de 350 Hz y 440 Hz. En Europa el tono de marcado consiste en una sola onda de 425 Hz.

Nota: Cuando era adolescente acostumbrábamos a afinar la guitarra escuchando el tono de marcado del teléfono pues resulta que 440 Hz es la frecuencia de la nota musical LA que corresponde a la quinta cuerda de la guitarra.

Marcación[editar]

La marcación puede ser por pulsos o por tonos. Los pulsos ya casi no se usan y fueron populares en los tiempos de los teléfonos de disco. Los tonos son pares de frecuencias asociadas con los dígitos telefónicos. Estas frecuencias se transmiten hasta la OC quien traduce estos tonos a números.

Más adelante se explicará más de estos tonos bajo el título DTMFs.

Conmutación[editar]

Una vez recibido los dígitos la OC tratará de asociar este número marcado con el circuito de un abonado. En caso de que el destinatario no fuere un abonado local, enviará la llamada a otro switch telefónico para su terminación.

Timbrado o Ringado[editar]

Una vez que la OC encuentra al abonado destino tratará de timbrarlo (ringing). La señal de ring es una onda sinusoidal de 20 Hz y de 90 Voltios de amplitud.

Nota: Si hemos sido observadores nos habremos dado cuenta de que la señal de ring tiene una amplitud considerable de 90 Voltios. Además recordemos que la línea ya tiene un componente adicional de Voltaje DC de 48 Voltios. Es por esta razón que si manipulamos los cables telefónicos desnudos en el preciso momento en el que llega una señal de ring podemos recibir una pequeña descarga eléctrica y pasar un buen susto.

Adicionalmente a la señal de ring que la OC envía al destinatario también envía una notificación a quien originó la llamada. Este tono audible recibe el nombre de ring-back y consiste en dos ondas sinusoidales superpuestas de 440 Hz y 480 Hz. Estas ondas van intercaladas con espacios de silencio.

En caso de que el destinatario se encuentre ya en una llamada activa entonces en lugar del ring-back se devuelve un tono de ocupado a quien originó la llamada. Este tono de ocupado consiste en dos ondas sinusoidales superpuestas de 480 Hz y 620 Hz intercaladas con espacios de silencio de medio segundo.

Todos los lectores sin duda han escuchado un ring-back y un tono de ocupado alguna vez en sus vidas.

Conversación[editar]

Si el destinatario decide contestar la llamada el teléfono cerrará el circuito telefónico (de la misma manera que ocurrió con el teléfono que originó la llamada en la etapa de descolgado). Esta señal le informará a la OC que el destinatario decidió contestar y completará la conexión. La llamada telefónica está finalmente en curso.

DTMFs[editar]

Muchas veces es necesario enviar dígitos a través de la línea telefónica tanto para marcar como en medio de una conversación. Con esta finalidad se pensaron los DTMFs. DTMF es un acrónimo de Dual-Tone Multi-Frequency. Es decir que cada DTMF es en realidad dos tonos mezclados enviados simultáneamente por la línea telefónica. Esto se hace así para disminuir los errores.

A continuación una tabla ilustrando los pares de frecuencias para cada dígito.

1209 Hz 1336 Hz 1477 Hz 1633 Hz
697Hz 1 2 3 A
770Hz 4 5 6 B
852Hz 7 8 9 C
941Hz * 0 # D

Como se puede ver en la tabla también hay correspondencias para los signos * y # así como también para los caracteres A, B, C y D.

El teléfono analógico[editar]

Es importante hablar de este componente importante de la red telefónica pues recordemos que su invención fue lo que marcó el desarrollo del negocio de la telefonía.

Es importante también hablar del teléfono analógico porque todavía es el tipo de teléfono más común en el planeta y porque la comprensión de su funcionamiento nos permitirá entender en el futuro algunos conceptos clave como por ejemplo el eco.

En realidad el teléfono, en su forma más básica, es un dispositivo sencillo compuesto de pocos componentes.

  • Auricular
  • Micrófono
  • Switch para colgado/descolgado
  • Convertidor de dos a cuatro hilos (también llamado híbrido)
  • Marcador (dialer)
  • Campana o dispositivo de timbrado

La mayoría de los componentes se explican por si solos. Sin embargo algunos se preguntarán de qué se trata el convertidor de 2 a 4 hilos?

Convertidor de 2 a 4 hilos[editar]

Un componente importante de un teléfono es el convertidor de dos a cuatro hilos, conocido también como dispositivo 2H/4H, bobina híbrida o simplemente híbrido. Este dispositivo es necesario para separar la señal de audio de ida de la de venida ya que son dos participantes en una conversación y solo existe un par de cables para esto. Si existieran tres o cuatro cables (2 de ida y 2 de venida) el convertidor de 2 a 4 hilos no fuera necesario, pero esto probablemente incrementaría los costos de cableado y las compañías telefónicas prefieren lidiar con los problemas de acoplamiento que este convertidor introduce en lugar de incrementar sus costos.

En general no existe convertidor de 2 a 4 hilos perfecto ya que es muy difícil separar las señales de ida y de regreso completamente. Es por eso que este dispositivo históricamente ha sido una de las causas de eco en líneas telefónicas mal acopladas. Ya hablaremos de esto en el capítulo de “calidad de voz”.

Circuitos digitales[editar]

La PSTN también sirve a sus abonados con circuitos digitales. Estos circuitos ofrecen la ventaja de poder multiplexar más de una línea en el mismo medio por lo que resulta atractivo para abonados con necesidades de un gran número de líneas telefónicas, por lo general empresas.

La base DS-0[editar]

Para decirlo simple, DS-0 es un canal digital de 64Kbit/s. Un DS-0 es por tanto una medida de canal estándar o unidad que nos sirve para definir múltiplos mayores como los circuitos que veremos a continuación.

Circuitos T-carrier y E-carrier[editar]

Los circuitos T-carrier (o portadora-T) fueron diseñados como nomenclatura para circuitos digitales mutiplexados y fueron desarrollados por Bell Labs hace más de cincuenta años. Los circuitos E-carrier son la equivalente europea.

El más conocido de los circuitos T-carrier es el popular T1 (y su contraparte E1). Un T1 es un circuito digital compuesto de 24 DS-0 ́s mientras que un E1 está compuesto por 32 DS-0 ́s. Si hacemos las matemáticas notaremos que un T1 trafica 1.544 Mbit/s mientras que un E1 2.048 Mbit/s.

Luego de los T1 ́s tenemos múltiplos mayores como T2, T3, T4 y T5.

SONET y Circuitos Ópticos[editar]

SONET (Synchronous optical networking) fue desarrollado con el objetivo de contar con una nomenclatura similar a las T-carrier pero usando la tecnología de fibra óptica. SONET utiliza múltiplos de T3 para sus anchos de banda y su circuito base es el llamado OC-1.

Luego del OC-1 tenemos los OC-3, OC-12, OC-24, OC-48, entre otros.

Protocolos de Señalización Digital[editar]

Los protocolos de señalización se utilizan para transmitir información de estado del canal de comunicaciones (como “desconectado”, “timbrando”, “respondido”), información de control y otra información como DTMFs, caller ID, entre otros.

Los protocolos de señalización se pueden agrupar en dos tipos llamados CAS (Channel Associated Sgnaling) y CCS (Common Channel Signaling). La diferencia es que mientras CAS transmite la señalización en el mismo canal en que viaja la información, CCS la transmite en un canal separado. Por este hecho es que con CAS se reduce ligeramente el ancho de banda disponible o útil para la comunicación ya que una parte de él se está usando para señalización. Esa es una de las razones por las cuales las compañías telefónicas han adoptado en su mayoría CCS.

Nota: No confunda el lector CAS y CCS con protocolos de señalización. Tan solo son tipos de protocolos que se explican aquí para hacer más fácil la categorización o agrupación de los mismos.

Señalización Asociada al Canal (CAS)[editar]

El protocolo CAS más conocido es robbed-bit y es usado en circuitos T1 y E1 alrededor del mundo.

Robbed-bit toma (o “roba”, de allí su nombre) el octavo bit de cada canal de comunicación cada seis frames y lo reemplaza por información de señalización. El bit original robado simplemente se pierde.

Hay que notar de lo anterior que esto es posible debido a que la voz no es muy sensible que digamos a la pérdida de ese bit de información ya que es el bit menos significativo. Pero cuando transportamos data la pérdida de un bit no puede pasar desapercibida y la calidad de la transmisión se degrada de manera sensible.

Otro protocolo CAS que aún subsiste en nuestros días es R2. Se trata de un protocolo que fue popular en los años 60s. En realidad R2 es una familia de protocolos en donde cada implementación se denomina “variante”. Existen variantes dependiendo del país o inclusive de la compañía telefónica que lo ofrece.

Al momento Elastix soporta este protocolo a través de la librería Unicall. Sin embargo en el futuro se espera soportar la implementación del proyecto openR2 desarrollado por el mexicano Moisés Silva.

Señalización de Canal Común (CCS)[editar]

ISDN[editar]

ISDN (Integrated Services Digital Network) nos permite transmitir voz y datos simultáneamente sobre pares telefónicos de cobre con calidad superior a las líneas telefónicas analógicas.

El objetivo de ISDN fue el de facilitar las conexiones digitales para poder ofrecer una amplia gama de servicios integrados a los usuarios. ISDN establece dos tipos de interfaces para cumplir con este fin.

  • BRI: Basic Rate Interface
  • PRI: Primary Rate Interface

BRI estuvo orientada a hogares. Un BRI supone 2 canales útiles (también llamados canales B) de 64Kbit/s cada uno más un canal de señalización de 16Kbit/s (también llamado canal D) que en total suman 144Kbit/s.

BRI estaba llamado a ser un estándar popular en hogares pero no fue así del todo y tuvo muy poca acogida en este segmento del mercado en los Estados Unidos. En Europa la situación fue diferente y es utilizado en muchos países de este continente.

PRI es la opción para usuarios de mayor envergadura como negocios o empresas pues puede aglutinar más canales B. Actualmente es muy popular y se transmite sobre circuitos T-carrier y E-carrier.