Ir al contenido

Aritmética/Multiplicacion de Números Enteros

De Wikilibros, la colección de libros de texto de contenido libre.

La multiplicación de números enteros, al igual que la suma, requiere determinar por separado el signo y valor absoluto del resultado.

En la multiplicación (o división) de dos números enteros se determinan el valor absoluto y el signo del resultado de la siguiente manera:

  • El valor absoluto es el producto de los valores absolutos de los factores.
  • El signo es «+» si los signos de los factores son iguales, y «−» si son distintos.


Para recordar el signo del resultado, también se utiliza la regla de los signos:

Definición. * (+) × (+)=(+) Más por más igual a más.

  • (+) × (−)=(−) Más por menos igual a menos.
  • (−) × (+)=(−) Menos por más igual a menos.
  • (−) × (−)=(+) Menos por menos igual a más.

Ejemplos. (+4) × (−6) = −24 , (+5) × (+3) = +15 , (−7) × (+8) = −56 , (−9) × (−2) = +18.

La multiplicación de números enteros tiene también propiedades similares a la de números naturales:

La multiplicación de números enteros cumple las siguientes propiedades:

Ejemplo.

  1. Propiedad asociativa:
  1. [ (−7) × (+4) ] × (+5) = (−28) × (+5) = −140
    (−7) × [ (+4) × (+5) ] = (−7) × (+20) = −140
  2. Propiedad conmutativa:
    (−6) × (+9) = −54
    (+9) × (−6) = −54

La suma y multiplicación de números enteros están relacionadas, al igual que los números naturales, por la propiedad distributiva:

Propiedad distributiva.' Dados tres números enteros Plantilla:Math, Plantilla:Math y Plantilla:Math, el producto Plantilla:Math y la suma de productos Plantilla:Math son idénticos.


Ejemplo.

  • (−7) × [ (−2) + (+5) ] = (−7) × (+3) = −21
  • [ (−7) × (−2) ] + [ (−7) × (+5) ] = (+14) + (−35) = −21