Apuntes matemáticos/Álgebra/Programación lineal

De Wikilibros, la colección de libros de texto de contenido libre.
Ir a la navegación Ir a la búsqueda

La Programación Lineal es un procedimiento o algoritmo matemático mediante el cual se resuelve un problema indeterminado, formulado a través de ecuaciones lineales, optimizando la función objetivo, también lineal.

Consiste en optimizar (minimizar o maximizar) una función lineal, que denominaremos función objetivo, de tal forma que las variables de dicha función estén sujetas a una serie de restricciones que expresamos mediante un sistema de inecuaciones lineales.


Historia[editar]

El problema de la resolución de un sistema lineal de inecuaciones se remonta, al menos, a Fourier, después de quien nace el método de eliminación de Fourier-Motzkin. La programación lineal se plantea como un modelo matemático desarrollado durante la Segunda Guerra Mundial para planificar los gastos y los retornos, a fin de reducir los costos al ejército y aumentar las pérdidas del enemigo. Se mantuvo en secreto hasta 1947. En la posguerra, muchas industrias lo usaron en su planificación diaria.

Los fundadores de la técnica son George Dantzig, quien publicó el algoritmo simplex, en 1947, John von Neumann, que desarrolló la teoría de la dualidad en el mismo año, y Leonid Kantorovich, un matemático ruso, que utiliza técnicas similares en la economía antes de Dantzig y ganó el premio Nobel en economía en 1975. Leonid Khachiyan en 1979 fue el primero en demostrar que el problema de la programación lineal se solucionaba en tiempo polinomial, sin embargo, el mejor avance en los principios teóricos y prácticos en el campo se produjo en 1984, cuando Narendra Karmarkar introduce un nuevo método del punto interior para resolver problemas de programación lineal.

El ejemplo original de Dantzig de la búsqueda de la mejor asignación de 70 personas a 70 puestos de trabajo es un ejemplo de la utilidad de la programación lineal. La potencia de computación necesaria para examinar todas las permutaciones a fin de seleccionar la mejor asignación es inmensa; el número de posibles configuraciones excede al número de partículas en el universo. Sin embargo, toma sólo un momento encontrar la solución óptima mediante el planteamiento del problema como una programación lineal y la aplicación del algoritmo simplex. La teoría de la programación lineal reduce drásticamente el número de posibles soluciones óptimas que deberán ser revisadas.