Ir al contenido

Cursos/E M T/2º Construcción - Matemáticas/Unidad 3

De Wikilibros, la colección de libros de texto de contenido libre.

Unidad 3: Nociones de Límite, Continuidad y Derivada

[editar]

Temas:

[editar]
  • Límite finito en un punto.
  • Operaciones con límites.
  • Continuidad.
  • Derivada. Tablas de derivada.

Competencias específicas:

[editar]

Límites:

[editar]
  • Noción de límite finito en un punto de abscisa x = a para funciones polinómicas de grado menor o igual que 2 y funciones definidas a intervalos. Límites laterales. Representación gráfica.
  • Obtener el límite de una función por aproximación de valores funcionales.
  • Identificar la existencia del límite de una función en un punto de su dominio y calcularlo.
  • Regla del límite de una suma y de un producto de funciones. Calcular el límite de una función aplicando las propiedades de la suma y/o producto de funciones.
  • Determinar el límite de una función dada por su gráfica.

Continuidad:

[editar]
  • Noción de continuidad de una función en un punto y en un intervalo utilizando funciones definidas a intervalos.
  • Reconocer la continuidad de una función en un punto o en un intervalo a partir de su gráfica.
  • Reconocer la diferencia entre la existencia y la continuidad de una función en un punto de su dominio.
  • Calcular límites laterales y determinar la existencia del límite de una función en un punto y su continuidad.

Incrementos:

[editar]
  • Comprender significado/concepto de incremento y cociente incremental de una función en un punto.
  • Cálculo del cociente incremental en un punto. Interpretación geométrica. Vínculo con el gráfico de la función.
  • Reconocer la variación del cociente incremental de una función al variar el incremento de la variable.

Derivada en un punto:

[editar]
  • Conocer la definición de derivada en un punto.
  • Aplicar la definición a funciones polinómicas de grado menor o igual que 2.
  • Tangente a una curva en un punto desde el punto de vista geométrico. Relación con la derivada en un punto.
  • Integrar el concepto geométrico de recta tangente a una curva en uno de sus puntos.
  • Reconocer la derivada en un punto como indicador de la rapidez de variación de la función en ese punto.
  • Interpretar geométricamente la derivada de una función en un punto.

Función derivada:

[editar]
  • Noción de función derivada.Comprender el concepto de función derivada. Deducción de las funciones derivadas de las funciones polinómicas de grado menor o igual que 2.
  • Tabla de derivadas de funciones: f(x) = k , f(x) = x , f(x) = kx ,f(x) = log x; f(x) =  ; f(x) =  ; f (x) = sen( ax + b ) , f(x) = cos( ax + b ) .
  • Deducir la derivada de las funciones polinómicas.
  • Derivada de una suma, un producto y un cociente de funciones.
  • Aplicar las fórmulas de derivación a la derivada de una función.


Variaciones funcionales:

[editar]
  • Crecimiento, decrecimiento. Extremos relativos. Extremos absolutos en un intervalo cerrado.
  • Relación entre la variación de una función y el signo de la función derivada.
  • Comprender el concepto de función derivada.
  • Inferir la variación de una función polinómica definida a intervalos, a partir de la fórmula de la función y de su función derivada.
  • Bosquejar curvas que no sean derivables en un punto.
  • Construir la gráfica de una función a partir de condiciones dadas: límite en un punto, discontinuidades, variación, etc.
  • Deducir del gráfico de una función la variación de la función derivada, utilizando el coeficiente angular de las rectas tangentes.
  • Resolución de problemas de optimización que involucren funciones polinómicas de grado menor o igual que 3.
  • Resolver problemas de optimización en que intervengan a lo sumo funciones polinómicas de tercer grado incluidas en situaciones vinculadas a la economía, la geometría o alguna área técnica.

Conocimientos mínimos para lograr suficiencia:

[editar]
  • Lograr calcular límites laterales en un punto dado de una función.
  • Estudiar y lograr continuidad en una función definida en intervalos.
  • Lograr la expresión de la función derivada de una función polinómica.
  • Interpretar adecuadamente la información obtenida con ceros y signos de la función derivada.