Electricidad/Electrostática/Aislantes y conductores

De Wikilibros, la colección de libros de texto de contenido libre.

Conductores[editar]

Cable de cobre, buen conductor
Aislante de vidrio, usado en torres de conducción

Una varilla metálica sostenida con la mano y frotada con una piel no resulta cargada. Sin embargo, es posible cargarla si se la provee de un mango de vidrio o de ebonita y el metal no se toca con las manos al frotarlo.

La explicación es que las cargas se pueden mover libremente en los metales y el cuerpo humano, mientras que en el vidrio y la ebonita no pueden hacerlo.

Esto se debe a que en ciertos materiales, típicamente en los metales, los electrones más alejados de los núcleos respectivos adquieren libertad de movimiento en el interior del sólido. Estas partículas se denominan electrones libres y son el vehículo mediante el cual se transporta la carga eléctrica. Estas sustancias se denominan conductores.

Aislantes[editar]

Oblea de arseniuro de galio, un semiconductor
Levitación de un imán sobre un superconductor de tipo cuprato YBa2Cu3O7 enfriado a -196 ° C.

En contrapartida a los conductores eléctricos, existen materiales en los cuales los electrones están firmemente unidos a sus respectivos átomos. En consecuencia, estas sustancias no poseen electrones libres y no será posible el desplazamiento de carga a través de ellos. Estas sustancias son denominadas aislantes o dieléctricos. El vidrio, la ebonita o el plástico son ejemplos típicos.

En consecuencia, esta diferencia de comportamiento de las sustancias respecto del desplazamiento de las cargas en su seno depende de la naturaleza de los átomos que las componen.

Semiconductores[editar]

Entre los buenos conductores y los dieléctricos existen múltiples situaciones intermedias. Entre ellas destacan los materiales semiconductores por su importancia en la fabricación de dispositivos electrónicos que son la base de la actual revolución tecnológica. En condiciones ordinarias se comportan como dieléctricos, pero sus propiedades conductoras pueden ser alteradas con cierta facilidad mejorando su conductividad en forma prodigiosa ya sea mediante pequeños cambios en su composición, sometiéndolos a temperaturas elevadas o a intensa iluminación.

Superconductores[editar]

A temperaturas cercanas al cero absoluto, ciertos metales adquieren una conductividad infinita, es decir, la resistencia al flujo de cargas se hace cero. Se trata de los superconductores. Una vez que se establece una corriente eléctrica en un superconductor, los electrones fluyen por tiempo indefinido.

Es de relevancia tener en cuenta, y puede verificarse experimentalmente, que solamente la carga negativa se puede mover. La carga positiva es inmóvil y únicamente los electrones libres son los responsables del transporte de carga.

Será una resistencia cero o muy cercana al límite de cero? Respuesta, R=0 ohms. Un superconductor no es simplemente un conductor normal perfecto Al contrario de lo que se podría pensar en principio, un superconductor se comporta de un modo muy distinto a los conductores normales: no se trata de un conductor cuya resistencia es cercana a cero, sino que la resistencia es exactamente igual a cero. Esto no se puede explicar mediante los modelos empleados para los conductores habituales, como por ejemplo el modelo de Drude.

Para demostrar esto vamos a suponer la hipótesis opuesta: imaginemos por un momento que un superconductor se comporta como un conductor normal. En tal caso, tendríamos que los electrones son esparcidos de alguna manera y su ecuación del movimiento sería:


donde es la velocidad media de los electrones, m su masa, e su carga y el campo eléctrico en el que se mueven. Suponiendo que dicho campo varía suavemente, al resolverla llegaríamos a la ley de Ohm:


donde es la densidad de corriente, \sigma la conductividad eléctrica, \tau el tiempo entre colisiones, y n la densidad de electrones.

Ahora bien, si suponemos que la resistencia tiende a cero, tendríamos que la conductividad tiende a infinito y por lo tanto el tiempo entre colisiones, tendería a infinito. Dicho de otra manera, no habría colisiones en absoluto. Esta es la idea de cómo se comportaría un conductor normal que tuviera resistencia nula. Sin embargo, esto significaría que, puesto que la densidad de corriente no puede ser infinita, la única posibilidad es que el campo eléctrico sea nulo:


No obstante, teniendo en cuenta la ley de Faraday, un campo eléctrico nulo implica que el campo magnético ha de ser constante:


pero esto entra en contradicción con el efecto Meissner, de modo que la superconductividad es un fenómeno muy diferente a la que implicaría una "conductividad perfecta", y requiere una teoría diferente que los explique.