Fundamentos de Astrofísica/Nacimiento y expansión del universo

De Wikilibros, la colección de libros de texto de contenido libre.

El Universo es generalmente definido como todo lo que existe físicamente: la totalidad del espacio y del tiempo, de todas las formas de la materia, la energía y el impulso, y las leyes y constantes físicas que las gobiernan.

Observaciones astronómicas indican que el Universo tiene una edad de 13,73 ± 0,12 mil millones de años y por lo menos 93 mil millones de "años luz" de extensión. El evento que dio inicio al Universo se denomina Big Bang. En aquel instante toda la materia y la energía del universo observable estaba concentrada en un punto de densidad infinita. Después del Big Bang, el universo comenzó a expandirse para llegar a su condición actual, y lo continúa haciendo.

Ya que, de acuerdo con la teoría especial de la relatividad, la materia no puede moverse a una velocidad superior a la de la luz, puede parecer paradójico que dos objetos del universo puedan haberse separado 93 mil millones de años luz en un tiempo de sólo 13 mil millones de años; sin embargo, esta separación es una consecuencia natural de la teoría de relatividad general.

La imagen de luz visible más profunda del cosmos, el Campo Ultra Profundo del Hubble.

Dicho simplemente, el espacio puede ampliarse a un ritmo superior que no está limitado por la velocidad de la luz. Por lo tanto, dos galaxias pueden separarse una de la otra más rápidamente que la velocidad de la luz, es el espacio entre ellas el que crece.

Mediciones sobre la distribución espacial y el desplazamiento hacia el rojo ("redshift") de galaxias distantes, la radiación cósmica de fondo de microondas, y los porcentajes relativos de los elementos químicos más ligeros, apoyan la teoría de la expansión del espacio, y más en general, la teoría del Big Bang, que propone que el espacio en sí se creó a partir de la nada en un momento específico en el pasado.

Observaciones recientes han demostrado que esta expansión se está acelerando, y que la mayor parte de la materia y la energía en el universo es fundamentalmente diferente de la observada en la Tierra, y no es directamente observable (véanse materia oscura y energía oscura). La imprecisión de las observaciones actuales ha limitado las predicciones sobre el destino final del Universo.

Los experimentos sugieren que el Universo se ha regido por las mismas leyes físicas, constantes a lo largo de su extensión e historia. La fuerza dominante en distancias cósmicas es la gravedad, y la relatividad general es actualmente la teoría más exacta en describirla. Las otras tres fuerzas fundamentales, y las partículas en las que actúan, son descritas por el Modelo Estándar. El Universo tiene por lo menos tres dimensiones del espacio y una de tiempo, aunque experimentalmente no se pueden descartar dimensiones adicionales muy pequeñas. El espacio-tiempo parece estar conectado de forma sencilla y sin problemas, y el espacio tiene una curvatura media muy pequeña, de manera que la geometría euclidiana es, como regla general, exacta en todo el universo.

Basándose en observaciones del universo observable, los físicos intentan describir el continuo espacio-tiempo en que nos encontramos, junto con toda la materia y energía existentes en él. Su estudio, en las mayores escalas, es el objeto de la cosmología, disciplina basada en la astronomía y la física, en la cual se describen todos los aspectos de este universo con sus fenómenos.

  • Edad: el Universo tiene 13.700 millones de años aproximadamente
  • Destino final: las pruebas apoyan la Teoría de la expansión permanente del Universo, aunque otras afirman que la materia oscura puede ejercer la fuerza de gravedad suficiente para detener la expansión y hacer que toda la materia se comprima; algo a lo que los científicos llamarían el "Big Crunch" o la Gran Implosión.

La teoría actualmente más aceptada dada por el belga valón Lemaître de la formación del Universo es el modelo del Big Bang, que describe la expansión del espacio-tiempo a partir de una singularidad espaciotemporal. El Universo experimentó un rápido periodo de inflación cósmica que arrasó con todas las irregularidades iniciales. A partir de entonces el Universo se expandió y se convirtió en estable, más frío y menos denso. Las variaciones menores en la distribución de la masa dieron como resultado la segregación fractal en porciones, que se encuentran en el universo actual como cúmulos de galaxias.

Nacimiento del Universo[editar]

El hecho de que el Universo esté en expansión se deriva de las observaciones del corrimiento al rojo realizadas en la década de 1920 y que se cuantifican por la ley de Hubble. Dichas observaciones son la predicción experimental del modelo de Fridmann-Robertson-Walker, que es una solución de las ecuaciones de campo de Einstein de la relatividad general, que predicen el inicio del universo mediante un big bang.

El corrimiento al rojo se refiere a que los astrónomos han observado que hay una relación directa entre la distancia a un objeto remoto (como una galaxia) y la velocidad con que está alejándose. En cambio, si esta expansión ha sido continua en toda la edad del Universo, entonces en el pasado estos objetos distantes que siguen alejándose tuvieron que estar una vez juntos. Esta idea da pie a la teoría del Big Bang’’; el modelo dominante en la cosmología actual.

Durante la era más temprana del Big Bang, se cree que el Universo era un caliente y denso plasma. Según avanzó la expansión, la temperatura cayó a ritmo constante hasta el punto en que los átomos se pudieron formar. En aquella época, la energía de fondo se desacopló de la materia y fue libre de viajar a través del espacio. La energía sobrante continuó enfriándose al expandirse el Universo y hoy forma el fondo cósmico de microondas. Esta radiación de fondo es remarcablemente uniforme en todas direcciones, circunstancia que los cosmólogos han intentado explicar como reflejo de un periodo temprano de inflación cósmica después del Big Bang.

El examen de las pequeñas variaciones en el fondo de radiación de microondas proporciona información sobre la naturaleza del Universo, incluyendo la edad y composición. La edad del universo desde el Big Bang, de acuerdo a la información actual proporcionada por el WMAP de la NASA, se estima en unos 13.700 millones de años, con un margen de error de un 1% (200 millones de años). Otros métodos de estimación ofrecen diferentes rangos de edad, desde 11.000 millones a 20.000 millones. En el libro de 1977 Los Primeros Tres Minutos del Universo, el premio Nobel Steven Weinberg muestra la física qué ocurrió justo momentos después del Big Bang. Los descubrimientos adicionales y los refinamientos de las teorías hicieron que lo actualizara y reeditara en 1993.


Sopa Primigenia[editar]

Hasta hace poco, la primera centésima de segundo era más bien un misterio, impidiendo a Weinberg y a otros describir exactamente cómo era el Universo. Los nuevos experimentos en el RHIC, en el Brookhaven National Laboratory, han proporcionado a los físicos una luz en esta cortina de alta energía, de tal manera que pueden observar directamente los tipos de comportamiento que pueden haber tomado lugar en ese instante.[5]

En estas energías, los quarks que componen los protones y los neutrones no estaban juntos, y una mezcla densa supercaliente de quarks y gluónes, con algunos electrones, era todo lo que podía existir en los microsegundos anteriores a que se enfriaran lo suficiente para formar el tipo de partículas de materia que observamos hoy en día.[6]


Protogalaxias[editar]

Los rápidos avances acerca de lo que pasó después de la existencia de la materia aportan mucha información sobre la formación de las galaxias. Se cree que las primeras galaxias eran débiles "galaxias enanas" que emitían tanta radiación que separarían los átomos gaseosos de sus electrones. Este gas, a su vez, se estaba calentando y expandiendo, y tenía la posibilidad de obtener la masa necesaria para formar las grandes galaxias que conocemos hoy.


Expansión del Universo[editar]

La ley de Hubble es una ley de cosmología física que establece que el corrimiento al rojo de una galaxia es proporcional a la distancia a la que ésta se encuentra.

La ley fue formulada por Edwin Hubble y su colaborador Milton Humason en 1929 después de cerca de una década de observaciones. Es considerada como la primera evidencia observacional del paradigma de la expansión del Universo, actualmente sirve como una de las piezas más citadas como prueba de soporte del Big Bang, según la Ley de Hubble, una medida de la inercia de la expansión del Universo viene dada por la Constante de Hubble.

Galaxia elíptica NGC 1316

A partir de esta relación observacional se puede inferir que las galaxias se alejan unas de otras a una velocidad proporcional a su distancia, relación más general que se conoce como relación velocidad-distancia y que a veces es confundida con la ley de Hubble.

Los cálculos más recientes de la constante, utilizando los datos del satélite WMAP, empezaron en 2003, permitieron dar el valor de 71 ± 4(km/s)/Mpc para esta constante.

En 2006 los nuevos datos aportados por este satélite dieron el valor de 70 (km/s)/Mpc, +2.4/-3.2. De acuerdo con estos valores, el Universo tiene una edad próxima a los 14.000 millones de años. En agosto de 2006, una medida menos precisa se obtuvo independientemente utilizando datos del Observatorio de rayos X Chandra orbital de la NASA: 77 ± 15%(km/s)/Mpc

El Big Bang dejó detrás un flujo de fondo de fotones y neutrinos. La temperatura de la radiación de fondo ha decrecido sin cesar con la expansión del Universo y ahora fundamentalmente consiste en la energía de microondas equivalente a una temperatura de 2.725 K. La densidad del fondo de neutrinos actual es sobre 150 por centímetro cúbico.

Enlaces[editar]

http://es.wikipedia.org/wiki/Universo

http://es.wikipedia.org/wiki/Big_Bang

http://es.wikipedia.org/wiki/Edad_del_universo

http://es.wikipedia.org/wiki/Protogalaxia

http://es.wikipedia.org/wiki/Origen_del_Universo